留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨髓间充质干细胞移植可促进移植胰岛周围新生血管形成

李睿 董红丽 刘汝斌 刘宝林

李睿, 董红丽, 刘汝斌, 等. 骨髓间充质干细胞移植可促进移植胰岛周围新生血管形成[J]. 器官移植, 2017, 8(2): 149-153. doi: 10.3969/j.issn.1674-7445.2017.02.011
引用本文: 李睿, 董红丽, 刘汝斌, 等. 骨髓间充质干细胞移植可促进移植胰岛周围新生血管形成[J]. 器官移植, 2017, 8(2): 149-153. doi: 10.3969/j.issn.1674-7445.2017.02.011
Li Rui, Dong Hongli, Liu Rubin, et al. Effect of bone mesenchymal stem cell transplantation on accelerating the vascularization surrounding transplant pancreatic islet[J]. ORGAN TRANSPLANTATION, 2017, 8(2): 149-153. doi: 10.3969/j.issn.1674-7445.2017.02.011
Citation: Li Rui, Dong Hongli, Liu Rubin, et al. Effect of bone mesenchymal stem cell transplantation on accelerating the vascularization surrounding transplant pancreatic islet[J]. ORGAN TRANSPLANTATION, 2017, 8(2): 149-153. doi: 10.3969/j.issn.1674-7445.2017.02.011

骨髓间充质干细胞移植可促进移植胰岛周围新生血管形成

doi: 10.3969/j.issn.1674-7445.2017.02.011
基金项目: 

国家自然科学基金 30972908

辽宁省科学技术基金 2013021074

详细信息
    通讯作者:

    刘宝林, Email: liubl55@hotmail.com

  • 中图分类号: R587.1, R617, R-332

Effect of bone mesenchymal stem cell transplantation on accelerating the vascularization surrounding transplant pancreatic islet

More Information
  • 摘要:   目的  探讨胰岛移植联合骨髓间充质干细胞(MSC)移植能否促进移植胰岛周围新生血管形成。  方法  以非肥胖糖尿病(NOD)小鼠作为受体,将NOD小鼠随机分为4组,联合移植组(6只)、单独胰岛移植组(6只)、单独MSC移植组(6只)、假性移植组(3只)。观察各组NOD小鼠移植后血糖和存活率的变化;采用5-乙炔基-2’脱氧尿苷(EdU)及dUTP缺口末端标记(TUNEL)方法,在胰岛移植后1、2、4周检测单独胰岛移植组和联合移植组移植胰岛的增殖与凋亡情况;采用光学显微镜(光镜)直接观察、组织化学及免疫组化的方法观察并定量分析,移植术后2、4、8周单独胰岛移植组和联合移植组移植胰岛的周围新生血管密度。  结果  MSC联合移植与胰岛单独移植均能明显改善移植后小鼠的血糖水平,提高NOD小鼠的存活率。MSC联合移植可促进胰岛细胞再生,减少细胞凋亡。联合移植组移植胰岛周围血管密度明显大于单独胰岛移植组。  结论  MSC可以促进移植胰岛周围新生血管生成,增加移植胰岛的血供,保护移植胰岛的功能与活性。

     

  • 图  1  移植术后不同组NOD小鼠血糖变化

    Figure  1.  Changes of blood glucose levels of NOD mice in different group after transplantation

    图  2  不同组NOD小鼠移植后生存曲线

    Figure  2.  Survival curves of NOD mice in different groups after transplantation

    图  3  移植术后两组NOD小鼠移植胰岛周围新生血管形成情况

    A图为术后2周单独胰岛移植组;B图为术后2周联合移植组;C图为术后4周单独胰岛移植组;D图为术后4周联合移植组

    Figure  3.  Generation of new vessels in transplant islet of NOD mice in two groups after transplantation (×40)

    图  4  胰岛移植术后4周的移植胰岛的组织化学及免疫组织化学染色情况

    A图为组织化学染色(HE,×100);B图为胰岛组织insulin的表达(免疫组织化学,×100);C图为单独胰岛移植组胰岛组织insulin的表达(免疫组织化学,×200);D图为联合移植组胰岛组织vWF的表达(免疫组织化学,×200)

    Figure  4.  Histochemical and immunohistochemical staining of transplant islet at 4 weeks after transplantation

    表  1  胰岛移植不同时间后各组胰岛细胞再生与凋亡率

    Table  1.   Islet cell regeneration and apoptosis rate in different time after islet transplantation (x±s, %)

    术后时间 单独胰岛移植组(n=6) 联合移植组(n=6)
    增殖率 凋亡率 增殖率 凋亡率
    1周 0.54±0.15 1.86±0.10b 0.63±0.04 1.43±0.13a, b
    2周 0.77±0.16 0.94±0.11 0.91±0.11 0.84±0.06
    4周 0.89±0.05 0.87±0.11 1.01±0.10 0.76±0.07
    与单独胰岛移植组比较,aP < 0.05;与同组增殖率比较,bP < 0.05
    下载: 导出CSV
  • [1] Hatipoglu B. Islet cell transplantation and alternative therapies[J]. Endocrinol Metab Clin North Am, 2016, 45(4):923-931. DOI: 10.1016/j.ecl.2016.06.004.
    [2] Farney AC, Sutherland DE, Opara EC. Evolution of islet transplantation for the last 30 years[J]. Pancreas, 2016, 45(1):8-20. DOI: 10.1097/MPA.0000000000000391.
    [3] Barbu, L. Jansson, M. Sandberg, et al. The use of hydrogen gas clearance for blood flow measurements in single endogenous and transplanted pancreatic islets[J]. Microvasc Res, 2015, 97:124-129. DOI: 10.1016/j.mvr.2014.10.002.
    [4] Lau J, Henriksnäs J, Svensson J, et al. Oxygenation of islets and its role in transplantation[J]. Curr Opin Organ Transplant, 2009, 14(6):688-693. DOI: 10.1097/MOT.0b013e32833239ff.
    [5] Pepper AR, Gala-Lopez B, Ziff O, et al. Revascularization of transplanted pancreatic islets and role of the transplantation site[J]. Clin Dev Immunol, 2013:352315. DOI: 10.1155/2013/352315.
    [6] 陈频, 黄山, 徐向进, 等. 脐带间充质干细胞不同模式干预对2型糖尿病大鼠胰岛细胞凋亡的作用比较[J/CD]. 中华细胞与干细胞杂志 (电子版), 2016, 6(1): 36-41. DOI: 10.3877/cma.j.issn.2095-1221.2016.01.006.

    Chen P, Huang S, Xu XJ, et al. Effects of umbilical cord mesenchymal stem cell on islet cell apoptosis of diabetes mellitus rats:a comparision of multiple doses and single dose[J/CD]. Chin J Cell Stem Cell (Electr Edit), 2016, 6(1):36-41.DOI: 10.3877/cma.j.issn.2095-1221.2016.01.006.
    [7] Baiguera S, Jungebluth P, Mazzanti B, et al. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements[J]. Transpl Int, 2012, 25(4):369-382. DOI: 10.1111/j.1432-2277.2011.01426.x.
    [8] Katuchova J, Harvanova D, Spakova T, et al. Mesenchymal stem cells in the treatment of type 1 diabetes mellitus[J]. Endocr Pathol, 2015, 26(2):95-103. DOI: 10.1007/s12022-015-9362-y.
    [9] Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair[J]. Biomed Res Int, 2013: 547902. DOI: 10.1155/2013/547902.
    [10] Bockeria L, Bogin V, Bockeria O, et al. Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic[J]. J Transl Med, 2013, 11:56. DOI: 10.1186/1479-5876-11-56.
    [11] Bottino R, Trucco M. Clinical implementation of islet transplantation: a current assessment[J]. Pediatr Diabetes, 2015, 16(6):393-401. DOI: 10.1111/pedi.12287.
    [12] Johannesson B, Sui L, Freytes DO, et al. Toward beta cell replacement for diabetes[J]. EMBO J, 2015, 34(7):841-855. DOI: 10.15252/embj.201490685.
    [13] Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects[J]. Curr Probl Surg, 2014, 51(2):49-86. DOI: 10.1067/j.cpsurg.2013.10.002.
    [14] Smink AM, Faas MM, de Vos P. Toward engineering a novel transplantation site for human pancreatic islets[J]. Diabetes, 2013, 62(5):1357-1364. DOI: 10.2337/db12-1553.
    [15] Gao X, Song L, Shen K, et al. Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions[J]. Mol Cell Endocrinol, 2014, 388(1/2):41-50. DOI: 10.1016/j.mce.2014.03.004.
    [16] Bruno S, Deregibus MC, Camussi G. The secretome of mesenchymal stromal cells: role of extracellular vesicles in immunomodulation[J]. Immunol Lett, 2015, 168(2):154-158. DOI: 10.1016/j.imlet.2015.06.007.
    [17] Caplan AI, Hariri R. Body management: mesenchymal stem cells control the internal regenerator[J]. Stem Cells Transl Med, 2015, 4(7):695-701. DOI: 10.5966/sctm.2014-0291.
    [18] Smadja DM, Levy M, Huang L, et al. Treprostinil indirectly regulates endothelial colony forming cell angiogenic properties by increasing VEGF-A produced by mesenchymal stem cells[J]. Thromb Haemost, 2015, 114(4):735-747. DOI: 10.1160/TH14-11-0907.
    [19] Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair[J]. Biomed Res Int, 2013: 547902. DOI: 10.1155/2013/547902.
    [20] Ito T, Itakura S, Todorov I, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function[J]. Transplantation, 2010, 89(12):1438-1445. doi: 10.1097/TP.0b013e3181db09c4
    [21] Figliuzzi M, Cornolti R, Perico N, et al. Bone marrow-derived mesenchymal stem cells improve islet graft function in diabetic rats[J]. Transplant Proc, 2009, 41(5):1797-1800. DOI: 10.1016/j.transproceed.2008.11.015.
    [22] Rackham CL, Chagastelles PC, Nardi NB, et al. Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice[J]. Diabetologia, 2011, 54(5):1127-1135. DOI: 10.1007/s00125-011-2053-4.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  27
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-28
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2017-03-15

目录

    /

    返回文章
    返回