留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

允许性高碳酸血症在大鼠肺移植急性排斥反应中对CD4+、CD8+T细胞的影响

王玲 拉佈旦白拉

王玲, 拉佈旦白拉. 允许性高碳酸血症在大鼠肺移植急性排斥反应中对CD4+、CD8+T细胞的影响[J]. 器官移植, 2016, 7(5): 365-369. doi: 10.3969/j.issn.1674-7445.2016.05.007
引用本文: 王玲, 拉佈旦白拉. 允许性高碳酸血症在大鼠肺移植急性排斥反应中对CD4+、CD8+T细胞的影响[J]. 器官移植, 2016, 7(5): 365-369. doi: 10.3969/j.issn.1674-7445.2016.05.007
Wang Ling, LaBudanbaila. Effect of permissive hypercapnia on CD4+ and CD8+ T cells of rats with acute rejection after lung transplantation[J]. ORGAN TRANSPLANTATION, 2016, 7(5): 365-369. doi: 10.3969/j.issn.1674-7445.2016.05.007
Citation: Wang Ling, LaBudanbaila. Effect of permissive hypercapnia on CD4+ and CD8+ T cells of rats with acute rejection after lung transplantation[J]. ORGAN TRANSPLANTATION, 2016, 7(5): 365-369. doi: 10.3969/j.issn.1674-7445.2016.05.007

允许性高碳酸血症在大鼠肺移植急性排斥反应中对CD4+、CD8+T细胞的影响

doi: 10.3969/j.issn.1674-7445.2016.05.007
详细信息
    通讯作者:

    拉佈旦白拉,E-mail:labudun1@163.com

  • 中图分类号: R617, R655.3

Effect of permissive hypercapnia on CD4+ and CD8+ T cells of rats with acute rejection after lung transplantation

More Information
  • 摘要:   目的  探讨允许性高碳酸血症在大鼠肺移植急性排斥反应中对CD4+、CD8+T细胞的影响。  方法  24只Wistar雄性大鼠和12只SD雄性大鼠配对,随机分成3组(每组6对)。对照组和治疗组分别以SD大鼠和Wistar大鼠为供、受体,同种移植组以Wistar大鼠为供、受体。采用Cuff法建立大鼠左肺原位移植急性排斥反应模型。治疗组再灌注后吸入50%的氧气和8%的二氧化碳,对照组和同种移植组再灌注后吸入50%的氧气。术后7 d采用免疫组织化学(免疫组化)方法检测移植肺组织中CD4+和CD8+T细胞的表达情况;采用流式细胞仪检测外周血中CD4+和CD8+T细胞的比例;采用酶链免疫吸附试验(ELISA)测外周血中白细胞介素(IL)-2和干扰素(IFN)-γ的水平。  结果  免疫组化结果显示,与对照组相比,治疗组和同种移植组大鼠移植肺组织中CD8+T细胞表达均明显减少。流式细胞分析结果显示,与对照组比较,治疗组和同种移植组的CD8+T细胞比例均明显降低(均为P<0.05)。ELISA结果显示,与对照组比较,治疗组和同种移植组的IL-2和IFN-γ水平均明显降低(均为P<0.05)。  结论  允许性高碳酸血症通过抑制CD8+ T细胞的增殖及CD4+ T细胞释放炎症因子,从而抑制肺移植后急性排斥反应。

     

  • 图  1  各组大鼠术后7d肺组织中CD4和CD8分子的表达(二氨基联苯胺,×40)

    注:A~C图为术后7 d肺组织内CD4+T细胞的表达;D~F图为术后7 d肺组织内CD8+T细胞的表达;A、D图为对照组,B、E图为治疗组,C、F图为同种移植组;T细胞表面的褐色颗粒即为阳性细胞

    Figure  1.  Expression of CD4 and CD8 molecules in lung tissues of rats in each group at 7 d after transplantation

    图  2  各组大鼠术后7 d外周血中淋巴细胞的流式细胞图

    注:A~C图为术后7 d肺组织内CD4+T细胞的比例;D~F图为术后7 d肺组织内CD8+T细胞的比例;A、D图为对照组,B、E图为治疗组,C、F图为同种移植组

    Figure  2.  Flow cytometry figures of peripheral blood lymphocytes of rats in each group at 7 d after transplantation

    表  1  各组大鼠外周血CD4+和CD8+T细胞比例及细胞因子水平的比较

    Table  1.   Comparison of ratios of CD4+ and CD8+ T cells and cytokine levels in peripheral blood of rats in each group

    组别 n CD4+T细胞(%) CD8+T细胞(%) IL-2(pg/ml) IFN-γ(pg/ml)
    对照组 6 33.9±8.0 27.2±7.1 48±5 60.8±8.5
    治疗组 6 29.6±3.7 14.3±3.4a 29±5a 27.5±2.4a
    同种移植组 6 30.3±1.9 13.8±1.7a 28±10a 21.5±3.8a
    注:与对照组比较,aP<0.05
    下载: 导出CSV
  • [1] Cui Y, Liu K, Monzon-Medina ME, et al. Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection[J].J Clin Invest, 2015, 125(11):4255-4268. doi: 10.1172/JCI79693
    [2] Hartert M, Senbaklavacin O, Gohrbandt B, et al. Lung transplantation: a treatment option in end-stage lung disease[J]. Dtsch Arztebl Int, 2014, 111(7):107-116. http://www.taodocs.com/p-26394760.html
    [3] Martinu T, Pavlisko EN, Chen DF, et al. Acute allograft rejection: cellular and humoral processes[J]. Clin Chest Med, 2011, 32(2):295-310. doi: 10.1016/j.ccm.2011.02.008
    [4] Hansdottir S, Hardardottir H, Einarsson O, et al. Lung transplantation in Icelanders[J]. Laeknabladid, 2016, 102(5):225-230.
    [5] Saldanha IJ, Akinyede O, Robinson KA. Immunosuppressive drug therapy for preventing rejection following lung transplantation in cystic fibrosis[J]. Cochrane Database Syst Rev, 2015, 11:CD009421. http://www.medscape.com/medline/abstract/26559561
    [6] Curley G, Hayes M, Laffey JG. Can 'permissive' hypercapnia modulate the severity of sepsis-induced ALI/ARDS? [J]. Crit Care, 2011, 15(2):212. doi: 10.1186/cc9994
    [7] Chen QR, Wang LF, Xia SS, et al. Role of interleukin-17A in early graft rejection after orthotopic lung transplantation in mice[J]. J Thorac Dis, 2016, 8(6):1069-1079. doi: 10.21037/jtd
    [8] Li W, Goldstein DR, Bribresco AC, et al. Surgical technique for lung retransplantation in the mouse[J].J Thorac Dis, 2013, 5(3):321-325. https://www.researchgate.net/publication/245030128_Surgical_technique_for_lung_retransplantation_in_the_mouse
    [9] Junqblut SA, Heidelmann LM, Westerfeld A, et al. Ventilation therapy for patients suffering from obstructive lung diseases[J]. Recent Pat Inflamm Allerqy Drug Discov, 2014, 8(1):1-8. doi: 10.2174/1872213X07666131229131037
    [10] Ijland MM, Heunks LM, van der Hoeven JG. Bench-to-beside review: hypercapnic acidosis in lung injury-from 'permissive' to 'therapeutic'[J]. Crit Care, 2010, 14(6):237. doi: 10.1186/cc9392
    [11] Hummler HD, Banke K, Wolfson MR, et al. The effects of lung protective ventilation or hypercapnic acidosis on gas exchange and lung injury in surfactant deficient rabbits[J]. PLoS One, 2016, 11(2):e0147807. doi: 10.1371/journal.pone.0147807
    [12] Contreras M, Masterson C, Laffey JG. Permissive hypercapnia: what to remember[J].Curr Opin Anaesthesiol, 2015, 28(1):26-37. doi: 10.1097/ACO.0000000000000151
    [13] Cheng CC, Su JL. 173P: vascular endothelial growth factor-C promotes EGFR-TKIs resistance and cancer stemness via SLUG of non-small cell lung cancer[J]. J Thorac Oncol, 2016, 11(4 Suppl):S132-S133. https://www.researchgate.net/publication/301333624_173P_Vascular_endothelial_growth_factor-C_promotes_EGFR-TKIs_resistance_and_cancer_stemness_via_SLUG_of_non-small_cell_lung_cancer
    [14] Tanaka S, Chen-Yoshikawa TF, Miyamoto E, et al.Vascular endothelial-cadherin expression after reperfusion correlates with lung injury in rat lung transplantation[J]. Ann Thorac Sug, 2016, 101(6):2161-2167. doi: 10.1016/j.athoracsur.2016.01.040
    [15] Böttcher J, Knolle PA. Global transcriptional characterization of CD8+ T cell memory[J]. Semin Immunol, 2015, 27(1):4-9. doi: 10.1016/j.smim.2015.03.001
    [16] Yamada D, Kadono T, Masui Y, et al.β7 Integrin controls mast cell recruitment, whereas αE integrin modulates the number and function of CD8+ T cells in immune complex-mediated tissue injury[J]. J Immunol, 2014, 192(9):4112-4121. doi: 10.4049/jimmunol.1300926
    [17] van de Berg PJ, Yong SL, Remmerswaal EB, et al. Cytomegalovirus-induced effector T cells cause endothelial cell damage[J]. Clin Vaccine Immunol, 2012, 19(5):772-779. doi: 10.1128/CVI.00011-12
    [18] Nakayama M. Antigen presentation by MHC-dressed cells[J]. Front Immunol, 2015, 5:672. http://www.ncbi.nlm.nih.gov/pubmed/25601867
    [19] Kulcsar KA, Griffin DE.T cell-derived interleukin-10 is an important regulator of the Th17 response during lethal alphavirus encephalomyelitis[J]. J Neuroimmunol, 2016, 295-296:60-67. https://www.researchgate.net/publication/301303558_T_cell-derived_interleukin-10_is_an_important_regulator_of_the_Th17_response_during_lethal_alphavirus_encephalomyelitis
    [20] Banuelos J, Lu NZ. A gradient of glucocorticoid sensitivity among helper T cell cytokines[J]. Cytokine Growth Factor Rev, 2016, DOI: 10.1016/j.cytogfr.2016.05.002 [Epub ahead of print].
    [21] Stangou M, Bantis C, Skoularopoulou M, et al.Th1, Th2 and Treg/T17 cytokines in two types of proliferative glomerulonephritis[J]. Indian J Nephrol, 2016, 26(3):159-166. doi: 10.4103/0971-4065.159303
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-20
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2016-09-15

目录

    /

    返回文章
    返回