留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移植肾缺血-再灌注损伤的发生机制及其保护研究进展

丁汉东 廖贵益

丁汉东, 廖贵益. 移植肾缺血-再灌注损伤的发生机制及其保护研究进展[J]. 器官移植, 2016, 7(2): 155-158. doi: 10.3969/j.issn.1674-7445.2016.02.015
引用本文: 丁汉东, 廖贵益. 移植肾缺血-再灌注损伤的发生机制及其保护研究进展[J]. 器官移植, 2016, 7(2): 155-158. doi: 10.3969/j.issn.1674-7445.2016.02.015

移植肾缺血-再灌注损伤的发生机制及其保护研究进展

doi: 10.3969/j.issn.1674-7445.2016.02.015
基金项目: 

安徽省自然科学基金 1508085SMH226

详细信息
    通讯作者:

    廖贵益, Email:liaoguiyi2@sina.com

  • 中图分类号: R617

  • 摘要: 肾缺血-再灌注损伤(IRI)指缺血肾重新获得血液灌注后, 损伤反而加重的现象, 是多因素参与的病理过程。IRI是肾移植术后影响肾功能恢复的主要因素。移植肾IRI的发生机制、寻找有效保护措施、促进移植肾功能早期恢复是肾移植领域的研究热点, 本文就此作一综述。

     

  • [1] Fuchs Y, Steller H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4):742-758. doi: 10.1016/j.cell.2011.10.033
    [2] Raedschelders K, Ansley DM, Chen DD. The cellular and molecular origin of reactive oxygen species generation during myocardial isehemia and reperfusion[J]. Pharmacol Ther, 2012, 133(2):230-255. doi: 10.1016/j.pharmthera.2011.11.004
    [3] Stamler JS, Reynolds JD, Hess DT. Endocrine nitric oxide bioactivity and hypoxic vasodilation by inhaled nitric oxide[J]. Circ Res, 2012, 110(5):652-654. doi: 10.1161/CIRCRESAHA.111.263996
    [4] Rossi AP, Vella JP. Hypertension, living kidney donors, and transplantation:where are we today?[J]. Adv Chronic Kidney Dis, 2015, 22(2):154-164. doi: 10.1053/j.ackd.2015.01.002
    [5] Duehrkop C, Rieben R. Ischemia/reperfusion injury:effect of simultaneous inhibition of plasma cascade systems versus specific complement inhibition[J]. Biochem Pharmacol, 2014, 88(1):12-22. doi: 10.1016/j.bcp.2013.12.013
    [6] Van der Pol P, Schlaqwein N, Van Gijlswijk DJ, et al. Mannan-binding lectin mediates renal ischemia/reperfusion injury independent of complement activation[J]. Am J Transplant, 2012, 12(4):877-887. doi: 10.1111/j.1600-6143.2011.03887.x
    [7] Bergler T, Hoffmann U, Bergler E, et al. Toll-like receptor 4 in experimental kidney transplantation:early mediator of endogenous danger signals[J]. Nephron Exp Nephrol, 2012, 121(3/4):e59-e70. https://www.ncbi.nlm.nih.gov/pubmed/23171961
    [8] Zhang X, Zhao J, Zhu W, et al. Synergistic effect of subtoxic-dose cisplatin and TRAIL to mediate apoptosis by down:regulating decoy receptor 2 and up-regulating caspase-8, caspase-9 and bax expression on NCI-H460 and A549 cells[J]. Iran J Basic Med Sci, 2013, 16(5):710-718. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3700047/
    [9] Taheri D, Talebi A, Taghaodi M, et al. Pathological diagnosis of antibody-mediated rejection in renal allograft without c4d staining, how much reliable[J]. Adv Biomed Res, 2012, 1:40. doi: 10.4103/2277-9175.100139
    [10] Chen J, Wang W, Zhang Q, et al. Low molecular weight fucoidan against renal ischemia-reperfusion injury via inhibition of the MAPK signaling pathway[J]. PLoS One, 2013, 8(2):e56224. doi: 10.1371/journal.pone.0056224
    [11] Jia Y, Zhao Z, Xu M, et al. Prevention of renal ischemia-reperfusion injury by short hairpin RNA of endothelin A receptor in a rat model[J]. Exp Biol Med, 2012, 237(8):894-902. doi: 10.1258/ebm.2012.011368
    [12] Zhang ZX, Shek K, Wang S, et al. Osteopontin expressed in tubular epithelial cells regulates NK cell:mediated kidney ischemia reperfusion injury[J]. J Immunol, 2010, 185(2):967-973. doi: 10.4049/jimmunol.0903245
    [13] Jongbloed F, de Bruin RW, Pennings JL, et al. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice[J]. PLoS One, 2014, 9(6):e100853. doi: 10.1371/journal.pone.0100853
    [14] Wever KE, Warlé MC, Wagener FA, et al. Remote ischaemic preconditioning by brief hind limb ischaemia protects against renal ischaemia-reperfusion injury:the role of adenosine[J]. Nephrol Dial Transplant, 2011, 26(10):3108-3117. doi: 10.1093/ndt/gfr103
    [15] Liang J, Wang J, Saad Y, et al. Participation of MCP-induced protein l in lipopolysaccharide preconditioning-induced ischemic stroke tolerance by regulating the expression of proinflammatory cytokines[J]. J Neuroinflammation, 2011, 8:182. doi: 10.1186/1742-2094-8-182
    [16] Liu H, Wu R, Jia RP, et al. Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury[J]. PLoS One, 2013, 8(1):e55389. doi: 10.1371/journal.pone.0055389
    [17] Hwang JK, Kim JM, Kim YK, et al. The early protective effect of glutamine pretreatment and ischemia preconditioning in renal ischemia-reperfusion injury of rat[J]. Transplant Proc, 2013, 45(9):3203-3208. doi: 10.1016/j.transproceed.2013.08.028
    [18] Zhang WL, Zhao YL, Liu XM, et al. Protective role of mitochondrial K-ATP channel and tochondrial membrane transport pore in rat kidney ischemic postconditioning[J]. Chin Med J, 2011, 124(14):2191-2195. http://www.medscape.com/medline/abstract/21933625
    [19] Van den Akker EK, Manintveld OC, Hesselink DA, et al. Protection against renal ischemia-reperfusion injury by ischemic postconditioning[J]. Transplantation, 2013, 95(11):1299-1305. doi: 10.1097/TP.0b013e318281b934
    [20] Dalle Lucca JJ, Li Y, Simovic MO, et al. Decay-accelerating factor limits hemorrhage-instigated tissue injury and improves resuscitation clinical parameters[J].J Surg Res, 2013, 179(1):153-167. doi: 10.1016/j.jss.2012.10.017
    [21] Mammadov E, Aridogan IA, Izol V, et al. Protective effects of phosphodiesterase-4-specific inhibitor rolipram on acute ischemia-reperfusion injury in rat kidney[J]. Urology, 2012, 80(6):1390.e1-e6. http://d.scholar.cnki.net/detail/SJPD8999_U/SJPD13012100844820
    [22] Nishiki T, Kitada H, Okabe Y, et al. Effect of milrinone on ischemia-reperfusion injury in the rat kidney[J]. Transplant Proc, 2011, 43(5):1489-1494. doi: 10.1016/j.transproceed.2011.03.009
    [23] Prieto-Moure B, Carabén-Redaño A, Aliena-Valero A, et al. Allopurinol in renal ischemia[J]. J Invest Surg, 2014, 27(5):304-316. doi: 10.3109/08941939.2014.911395
    [24] Tsuda H, Kawada N, Kaimori JY, et al. Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress[J]. Biochem Biophys Res Commun, 2012, 427(2):266-272. doi: 10.1016/j.bbrc.2012.09.032
    [25] Garcia-Cenador MB, Lorenzo-Gomez MF, Herrero-Payo JJ, et al. Cardiotrophin-1 administration protects from ischemia-reperfusion renal injury and inflammation[J]. Transplantation, 2013, 96(12):1034-1042. doi: 10.1097/TP.0b013e3182a74db4
    [26] Tuuminen R, Nykänen AI, Saharinen P, et al. Donor simvastatin treatment prevents ischemia-reperfusion and acute kidney injury by preserving microvascular barrier function[J]. Am J Transplant, 2013, 13(8):2019-2034. doi: 10.1111/ajt.12315
    [27] Jiang S, Tang Q, Rong R, et al. Mycophenolate mofetil inhibits macrophage infiltration and kidney fibrosis in long-term ischemia-reperfusion injury[J]. Eur J Pharmacol, 2012, 688(1/2/3):56-61. https://www.ncbi.nlm.nih.gov/pubmed/22609232
    [28] Zhao Z, Guan R, Song S, et al. Sinomenine protects mice against ischemia reperfusion induced renal injury by attenuating inflammatory response and tubular cell apoptosis[J]. Int J Clin Exp Pathol, 2013, 6(9):1702-1712. https://www.ncbi.nlm.nih.gov/pubmed/24040435
    [29] Ruan Y, Wang L, Zhao Y, et al. Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia-reperfusion injury[J]. Kidney Int, 2014, 86(3):525-537. doi: 10.1038/ki.2014.80
    [30] Baulier E, Favreau F, Le Corf A, et al. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation[J]. Stem Cells Transl Med, 2014, 3(7):809-820. doi: 10.5966/sctm.2013-0186
    [31] Xing L, Cui R, Peng L, et al. Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury[J]. Stem Cell Res Ther, 2014, 5(4):101. doi: 10.1186/scrt489
    [32] Donizetti-Oliveira C, Semedo P, Burgos-Silva M, et al. Adipose tissue-derived stem cell treatment prevents renal disease progression[J]. Cell Transplant, 2012, 21(8):1727-1741. doi: 10.3727/096368911X623925
    [33] Vavrincova-Yaghi D, Deelman LE, Goor H, et al. Gene therapy with adenovirus-delivered indoleamine 2, 3-dioxygenase improves renal function and morphology following allogeneic kidney transplantation in rat[J]. J Gene Med, 2011, 13(7/8):373-381. http://www.medscape.com/medline/abstract/21710661
    [34] Duann P, Lianos EA. Mechanisms of HO-1 mediated attenuation of renal immune injury:a gene profiling study[J]. Transl Res, 2011, 158(4):249-261. doi: 10.1016/j.trsl.2011.06.001
    [35] Yang B, Elias JE, Bloxham M, et al. Synthetic small interfering RNA down-regulates caspase-3 and affects apoptosis, IL-1β, and viability of porcine proximal tubular cells[J]. J Cell Biochem, 2011, 112(5):1337-1347. doi: 10.1002/jcb.v112.5
    [36] Jia P, Teng J, Zou J, et al. MiR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice[J]. Anesthesiology, 2013, 119(3):621-630. doi: 10.1097/ALN.0b013e318298e5f1
    [37] Yuan Q, Hong S, Han S, et al. Preconditioning with physiological levels of ethanol protect kidney against ischemia/reperfusion injury by modulating oxidative stress[J]. PLoS One, 2011, 6(10):e25811. doi: 10.1371/journal.pone.0025811
  • 加载中
计量
  • 文章访问数:  136
  • HTML全文浏览量:  110
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-10
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回