留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百里醌对肝缺血-再灌注损伤的作用研究

朱蕾 张丽

朱蕾, 张丽. 百里醌对肝缺血-再灌注损伤的作用研究[J]. 器官移植, 2016, 7(2): 144-149. doi: 10.3969/j.issn.1674-7445.2016.02.013
引用本文: 朱蕾, 张丽. 百里醌对肝缺血-再灌注损伤的作用研究[J]. 器官移植, 2016, 7(2): 144-149. doi: 10.3969/j.issn.1674-7445.2016.02.013
Zhu Lei, Zhang Li. Effect of thymoquinone on hepatic ischemic-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2016, 7(2): 144-149. doi: 10.3969/j.issn.1674-7445.2016.02.013
Citation: Zhu Lei, Zhang Li. Effect of thymoquinone on hepatic ischemic-reperfusion injury[J]. ORGAN TRANSPLANTATION, 2016, 7(2): 144-149. doi: 10.3969/j.issn.1674-7445.2016.02.013

百里醌对肝缺血-再灌注损伤的作用研究

doi: 10.3969/j.issn.1674-7445.2016.02.013
基金项目: 

宜昌市科技基金 A11301-38

详细信息
    通讯作者:

    朱蕾, Email:2473582531@qq.com

  • 中图分类号: R617;R-332

Effect of thymoquinone on hepatic ischemic-reperfusion injury

More Information
  • 摘要:   目的  探讨百里醌对肝缺血-再灌注损伤(IRI)的作用及其机制。  方法  30只C57小鼠随机均分为假手术(Sham)组、IRI组和百里醌(Thy)组(每组各10只)。术前1 h, Thy组给予百里醌(40 ml/kg)腹腔注射, Sham组和IRI组给予无水乙醇(40 ml/kg)腹腔注射。IRI组和Thy组建立小鼠肝IRI模型。再灌注4 h后收集血清和肝脏标本。光学显微镜下观察肝组织病理学改变, 并予病理损伤评分; 采用逆转录聚合酶链反应(RT-PCR)检测肝组织肿瘤坏死因子(TNF)-α、单核细胞趋化蛋白(MCP)-1和白细胞介素(IL)-6的信使核糖核酸(mRNA)表达水平; 采用酶链免疫吸附试验(ELISA)检测血清中TNF-α、MCP-1和IL-6的蛋白表达水平; 采用硫代巴比妥酸(TBA)法检测肝组织丙二醛(MDA)的含量; 采用ELISA法测定肝组织过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)、超氧化物歧化酶(SOD)活性; 采用肝组织免疫印迹法(Western blot)检测Wnt、β-catenin、p53的蛋白表达水平。  结果  与Sham组比较, IRI组肝组织损伤严重, 损伤评分明显增加(P < 0.05), 肝组织和血清中的TNF-α、MCP-1、IL-6和肝组织MDA、Wnt、β-catenin、p53的表达均明显增多(P < 0.05~0.001), 而肝组织CAT、GPx与SOD活性均明显降低(均为P < 0.001)。与IRI组比较, Thy组肝组织损伤较轻, 损伤评分明显减少(P < 0.05), 肝组织和血清中的TNF-α、MCP-1、IL-6和肝组织MDA、Wnt、β-catenin、p53的表达均明显减少(均为P < 0.05), 而肝组织CAT、GPx与SOD活性均明显增高(均为P < 0.05)。  结论  百里醌通过减轻炎症反应和氧化应激而减轻肝IRI, 其作用机制与抑制Wnt/β-catenin/p53信号通路激活有关。

     

  • 图  1  3组小鼠肝组织病理学改变(HE,×100)

    注:A图为Sham组;B图为IRI组;C图为Thy组

    Figure  1.  Pathological changes of liver tissue of mice in three groups

    图  2  3组小鼠肝组织Wnt、β-catenin和p53的蛋白表达水平比较

    注:与Sham组比较,aP < 0.05,bP < 0.001;与IRI组比较,cP < 0.05

    Figure  2.  Comparison of the expression levels of Wnt, β-catenin and p53 in liver tissue of mice in three groups

    表  1  本实验所用基因的引物序列

    Table  1.   Primer sequences of genes in the experiment

    基因 种属 上游引物序列(5’ to 3’) 下游引物序列(3’ to 5’)
    TNF-α 小鼠 TACCCATACGATGTTCCAGATTACGCT TATCCATATGATGTTCCAGATTATGCT
    MCP-1 小鼠 TAATACGACTCACTATAGGG TAGAAGGCACAGTCGAGG
    IL-6 小鼠 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATACA
    β-actin 小鼠 GCTCTGGCTCCTAGCACCAT GCCACCGATCCACACAGAGT
    下载: 导出CSV

    表  2  3组小鼠肝组织中促炎症细胞因子mRNA表达水平的比较

    Table  2.   Comparison of mRNA levels of pro-inflammatory cytokines in the liver tissue of mice in three groups (x±s)

    组别 n TNF-α mRNA MCP-1 mRNA IL-6 mRNA
    Sham组 10 1.00±0.10 1.00±0.05 0.85±0.10
    IRI组 10 13.00±1.50b 5.50±0.40a 8.50±0.75a
    Thy组 10 5.00±0.50c 1.50±0.50c 2.50±0.50c
    注:与Sham组比较,aP < 0.05,bP < 0.001;与IRI组比较,cP < 0.05
    下载: 导出CSV

    表  3  3组小鼠血清中促炎症细胞因子蛋白表达水平的比较

    Table  3.   Comparison of protein expression levels of pro-inflammatory cytokines in serum of mice in three groups(x±s, ng/L)

    组别 n TNF-α MCP-1 IL-6
    Sham组 10 110±10 100±20 100±10
    IRI组 10 1 500±300b 650±40a 850±50a
    Thy组 10 450±150c 250±30c 550±30c
    注:与Sham组比较,aP < 0.05,bP < 0.001;与IRI组比较,cP < 0.05
    下载: 导出CSV

    表  4  3组小鼠肝组织中氧化应激酶类活性的比较

    Table  4.   Comparison of oxidative stress enzymes activity in liver tissue of mice in three groups (x±s, ng/L)

    组别 n CAT GPx SOD
    Sham组 10 100±10 95±5 103±9
    IRI组 10 30±5a 40±4a 38±4a
    Thy组 10 60±5b 65±5b 75±7b
    注:与Sham组比较,aP < 0.001;与IRI组比较,bP < 0.05
    下载: 导出CSV
  • [1] Patel RP, Lang JD, Smith AB, et al. Redox therapeutics in hepatic ischemia reperfusion injury[J]. World J Hepatol, 2014, 6(1):1-8. http://www.cqvip.com/qk/71422x/201401/1003031655.html
    [2] Datta G, Fuller BJ, Davidson BR. Molecular mechanisms of liver ischemia reperfusion injury:insights from transgenic knockout models[J]. World J Gastroenterol, 2013, 19(11):1683-1698. doi: 10.3748/wjg.v19.i11.1683
    [3] Dalal AR. Split liver transplantation:what's unique[J]. World J Transplant, 2015, 5(3):89-94. doi: 10.5500/wjt.v5.i3.89
    [4] Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury:a 2015 update[J].Clin Sci, 2015, 129(4):345-362. doi: 10.1042/CS20150223
    [5] Weeder PD, van Rijn R, Porte RJ. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures:rationale, current evidence and future directions[J]. J Hepatol, 2015, 63(1):265-275. doi: 10.1016/j.jhep.2015.03.008
    [6] Darakhshan S, Pour AB, Colagar AH, et al. Thymoquinone and its therapeutic potentials[J]. Pharmacol Res, 2015, 95/96:138-158. doi: 10.1016/j.phrs.2015.03.011
    [7] Ahmad A, Husain A, Mujeeb M, et al. A review on therapeutic potential of Nigella sativa:a miracle herb[J]. Asian Pac J Trop Biomed, 2013, 3(5):337-352. doi: 10.1016/S2221-1691(13)60075-1
    [8] Majdalawieh AF, Fayyad MW. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone:a comprehensive review[J].Int Immunopharmacol, 2015, 28(1):295-304. doi: 10.1016/j.intimp.2015.06.023
    [9] Khader M, Eckl PM. Thymoquinone:an emerging natural drug with a wide range of medical applications[J]. Iran J Basic Med Sci, 2014, 17(12):950-957. http://europepmc.org/articles/PMC4387230
    [10] Tao X, Sun X, Yin L, et al. Dioscin ameliorates cerebral ischemia/reperfusion injury through the downregulation of TLR4 signaling via HMGB-1 inhibition[J]. Free Radic Biol Med, 2015, 84:103-115. doi: 10.1016/j.freeradbiomed.2015.03.003
    [11] Liu A, Huang L, Fan H, et al. Baicalein pretreatment protects against liver ischemia/reperfusion injury via inhibition of NF-κB pathway in mice[J]. Int Immunopharmacol, 2015, 24(1):72-79. doi: 10.1016/j.intimp.2014.11.014
    [12] Mcdonald KA, Huang H, Tohme S, et al. Toll-like receptor 4(TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1(HMGB1) signaling[J]. Mol Med, 2015, 20:639-648. http://molmed.org/journal/articles/37/1736
    [13] Guan LY, Fu PY, Li PD, et al. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide[J]. World J Gastrointest Surg, 2014, 6(7):122-128. doi: 10.4240/wjgs.v6.i7.122
    [14] 李夏静, 陈瑞琦, 陈旭征, 等.总丹参多酚酸预处理对脊髓缺血再灌注损伤的保护作用[J/CD].中华细胞与干细胞杂志(电子版), 2015, 5(2):33-37. http://www.cnki.com.cn/Article/CJFDTotal-ZXGA201502008.htm

    Li XJ, Chen RQ, Chen XZ, et al. Protective effect of pretreatment with salvianolic acids on spinal cord ischemia-reperfusion injury in rats[J/CD]. Chin J Cell and Stem Cell(Electr Edit), 2015, 5(2):33-37. http://www.cnki.com.cn/Article/CJFDTotal-ZXGA201502008.htm
    [15] 马帅军, 张更, 曹志强, 等.肾缺血-再灌注损伤大鼠SDF-1、ICAM-1表达与肾小管坏死评分的相关性研究[J].器官移植, 2014, 5(5):294-298. http://www.organtranspl.com/browse/detail/qkid/82/id/192.html

    Ma SJ, Zhang G, Cao ZQ, et al. Relationship between the expression of SDF-1, ICAM-1 and renal tubular necrosis score in rats with renal ischemic reperfusion injury[J]. Organ Transplant, 2014, 5(5):294-298. http://www.organtranspl.com/browse/detail/qkid/82/id/192.html
    [16] Chtourou Y, Aouey B, Kebieche, et al. Protective role of naringin against cisplatin induced oxidative stress, inflammatory response and apoptosis in rat striatum via suppressing ROS-mediated NF-κB and P53 signaling pathways[J]. Chem Biol Interact, 2015, 239:76-86. doi: 10.1016/j.cbi.2015.06.036
    [17] Zhao L, An R, Yang Y, et al. Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress:the role of SIRT1 signaling[J]. J Pineal Res, 2015, 59(2):230-239. doi: 10.1111/jpi.12254
    [18] Zhang F, Ren T, Wu J, et al. Small concentrations of TGF-β1 promote proliferation of bone marrow-derived mesenchymal stem cells via activation of Wnt/β-catenin pathway[J]. Indian J Exp Biol, 2015, 53(8):508-513. http://www.researchgate.net/publication/281636862_Small_concentrations_of_TGF-1_promote_proliferation_of_bone_marrow-derived_mesenchymal_stem_cells_via_activation_of_Wnt-catenin_pathway
    [19] Li XL, Zhou J, Chen ZR, et al. P53 mutations in colorectal cancer:molecular pathogenesis and pharmacological reactivation[J]. World J Gastroenterol, 2015, 21(1):84-93. doi: 10.3748/wjg.v21.i1.84
    [20] Dibra D, Mishra L, Li S. Molecular mechanisms of oncogene-induced inflammation and inflammation-sustained oncogene activation in gastrointestinal tumors:an under-appreciated symbiotic relationship[J]. Biochim Biophys Acta, 2014, 1846(1):152-160. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140981/
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  49
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-20
  • 网络出版日期:  2021-01-19
  • 刊出日期:  2016-03-15

目录

    /

    返回文章
    返回