留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肾缺血-再灌注损伤大鼠SDF-1、ICAM-1表达与肾小管坏死评分的相关性研究

马帅军 张更 曹志强 刘克普 李智斌 阮东丽 杨晓剑 袁建林

马帅军, 张更, 曹志强, 等. 肾缺血-再灌注损伤大鼠SDF-1、ICAM-1表达与肾小管坏死评分的相关性研究[J]. 器官移植, 2014, 5(5): 294-298. doi: 10.3969/j.issn.1674-7445.2014.05.007
引用本文: 马帅军, 张更, 曹志强, 等. 肾缺血-再灌注损伤大鼠SDF-1、ICAM-1表达与肾小管坏死评分的相关性研究[J]. 器官移植, 2014, 5(5): 294-298. doi: 10.3969/j.issn.1674-7445.2014.05.007
Ma Shuaijun, Zhang Geng, Cao Zhiqiang, et al. Relationship between the expression of SDF-1, ICAM-1 and renal tubular necrosis score in rats with renal ischemic reperfusion injury[J]. ORGAN TRANSPLANTATION, 2014, 5(5): 294-298. doi: 10.3969/j.issn.1674-7445.2014.05.007
Citation: Ma Shuaijun, Zhang Geng, Cao Zhiqiang, et al. Relationship between the expression of SDF-1, ICAM-1 and renal tubular necrosis score in rats with renal ischemic reperfusion injury[J]. ORGAN TRANSPLANTATION, 2014, 5(5): 294-298. doi: 10.3969/j.issn.1674-7445.2014.05.007

肾缺血-再灌注损伤大鼠SDF-1、ICAM-1表达与肾小管坏死评分的相关性研究

doi: 10.3969/j.issn.1674-7445.2014.05.007
基金项目: 

陕西省科技统筹创新工程 2012KTCL-03-03

详细信息
    通讯作者:

    袁建林,Email:jianliny@fmmu.edu.cn

  • 中图分类号: R617

Relationship between the expression of SDF-1, ICAM-1 and renal tubular necrosis score in rats with renal ischemic reperfusion injury

  • 摘要:   目的   探讨肾缺血-再灌注损伤(IRI)大鼠基质细胞衍生因子(SDF)-1、细胞间黏附分子-1(ICAM-1)与肾小管坏死评分的相关性。   方法   将60只SD大鼠随机分成手术组、假手术组两组,每组各30只。根据手术后检测时间不同,每组再分为6个不同时段的亚组(1、6、12、24、48、72 h组),每个亚组有5只大鼠。手术组建立大鼠肾IRI模型,假手术组大鼠仅予游离双侧肾动脉后缝合切口。检测各个时间点肾功能、肾小管坏死评分及肾脏组织SDF-1、ICAM-1表达变化。对手术组大鼠肾组织SDF-1、ICAM-1表达与肾功能和肾小管坏死评分进行Pearson直线相关分析。   结果   手术组术后血尿素氮(BUN)、血清肌酐(Scr)较术前及相应时间段假手术亚组明显升高(均为P<0.05),且于术后12 h显著升高,高峰期在术后48 h。手术组肾小管坏死评分随时间的延长逐渐增高(均为P<0.05);肾小管坏死评分最高在手术48 h组(P<0.05)。与手术1 h组比较,手术6 h组大鼠肾组织SDF-1、ICAM-1表达开始明显增多(均为P<0.05);手术后48 h达高峰,于手术后72 h开始下降。手术组的肾组织SDF-1、ICAM-1表达与术后各时间段BUN、Scr、肾小管坏死评分呈正相关(r=0.614、0.662、0.751;0.640、0.703、0.785;均为P<0.05)。   结论   当大鼠肾组织发生IRI时,SDF-1、ICAM-1表达上调,BUN、Scr升高,肾小管坏死评分升高,而且SDF-1、ICAM-1的表达与BUN、Scr、肾小管坏死评分呈正相关,提示SDF-1、ICAM-1表达增高程度可以作为反映肾IRI后严重程度的指标。

     

  • 表  1  各组大鼠手术前后不同时间的肾功能变化

    Table  1.   The change of renal function in each group of rats at different time point before and after surgery (x±s)

    分 组nBUN(mmol/L)Scr(μmol/L)
    术前术后术前术后
    手术组
    1 h组56.31±0.6516.37±1.12a,b46.92±2.93109.27±10.12a,b
    6 h组56.57±0.5419.78±3.18a,b46.01±1.37122.84±11.86a,b
    12 h组57.00±0.3324.23±2.35a,b49.00±5.09216.10±17.24a,b
    24 h组57.33±0.3439.92±3.00a,b46.65±2.67251.20±12.26a,b
    48 h组57.21±0.4247.28±2.64a,b46.54±3.80307.00±12.01a,b
    72 h组57.45±0.3225.35±4.48a,b47.01±2.13223.00±12.34a,b
    假手术组
    1 h组56.17±0.106.02±0.2447.29±1.6050.29±4.56
    6 h组56.35±0.236.38±0.7849.02±2.5150.13±3.04
    12 h组57.64±0.126.43±0.4247.83±2.6251.67±5.95
    24 h组57.07±0.456.83±0.5249.92±3.4049.34±3.23
    48 h组57.55±0.357.13±0.6446.50±1.2346.17±2.17
    72 h组56.78±0.407.38±0.5048.63±2.9752.00±2.95
    注:与同组术前比较,aP<0.05;与假手术同时间亚组比较,bP<0.05
    下载: 导出CSV

    表  2  各组大鼠手术后不同时间的SDF-1、ICAM-1的表达

    Table  2.   SDF-1 and ICAM-1 expressions in each group of rats at different timepoint after surgery (μg/ml,(x±s))

    分 组nSDF-1 ICAM-1
    手术组
    1 h组50.86±0.260.92±0.31
    6 h组51.06±0.15a1.28±0.23a
    12 h组51.36±0.30a1.45±0.33a
    24 h组52.03±0.22a1.73±0.21a
    48 h组53.35±0.13a2.17±0.14a
    72 h组53.11±0.28a2.13±0.24a
    假手术组
    1 h组50.53±0.320.72±0.11
    6 h组50.72±0.250.81±0.23
    12 h组50.66±0.270.79±0.31
    24 h组50.59±0.220.83±0.16
    48 h组50.78±0.160.82±0.22
    72 h组50.53±0.320.77±0.12
    注:与手术1 h组比较,aP<0.05
    下载: 导出CSV

    表  3  各组大鼠术后不同时间段肾小管坏死评分

    Table  3.   Tubular necrosis score in each group of rats at different timepoint after surgery (x±s

    时 间n手术组n假手术组
    肾小管坏死评分肾小管坏死评分
    1 h542.27±2.82a514.25±0.16
    6 h544.30±3.50a515.30±0.56
    12 h562.50±1.87a514.80±0.75
    24 h597.30±1.63a515.30±0.82
    48 h5148.70±5.43a515.20±0.75
    72 h5122.50±3.78a514.50±1.05
    注:与假手术组同时间亚组比较,aP<0.05
    下载: 导出CSV
  • [1] Kłoda K, Domański L, Pawlik A, et al. The impact of ICAM1 and VCAM1 gene polymorphisms on chronic allograft nephropathy and transplanted kidney function[J]. Transplant Proc,2013,45(6):2244-2247. doi: 10.1016/j.transproceed.2013.03.043
    [2] Kłoda K, Domański L, Pawlik A, et al. The impact of ICAM1 and VCAM1 gene polymorphisms on long-term renal transplant function and recipient outcomes[J]. Ann Transplant,2013,18:231-237. doi: 10.12659/AOT.883917
    [3] Mannam VK, Lewis RE, Cruse JM. The fate of renal allografts hinges on responses of the microvascular endothelium[J]. Exp Mol Pathol,2013,94(2):398-411. doi: 10.1016/j.yexmp.2012.06.002
    [4] Cho HK, Kim SY, Seong JK, et al. Hepatitis B virus X increases immune cell recruitment by induction of chemokine SDF-1[J]. FEBS Lett,2014,588(5):733-739. doi: 10.1016/j.febslet.2014.01.017
    [5] Flameng W, De Visscher G, Mesure L, et al. Coating with fibronectin and stromal cell-derived factor-1α of decellularized homografts used for right ventricularoutflow tract reconstruction eliminates immune response-related degeneration[J]. J Thorac Cardiovasc Surg,2014,147(4):1398-1404. doi: 10.1016/j.jtcvs.2013.06.022
    [6] 易小敏, 张更, 马帅军. 大鼠急性肾缺血再灌注损伤模型的建立与评估[J]. 现代生物医学进展,2011, 11(21): 4027-4029. http://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201121008.htm

    Yi XM, Zhang G, Ma SJ. Establishment and evaluation of rat acute kidney ischemia/reperfusion model[J]. Prog Mod Biomed,2011, 11(21): 4027-4029. http://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201121008.htm
    [7] Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat[J]. J Clin Invest,1984,74(4):1156-1164. doi: 10.1172/JCI111524
    [8] Shayegi N, Meyer C, Lambert K, et al. CXCR4 blockade and sphingosine-1-phosphate activation facilitate engraftment of haematopoietic stem and progenitor cells in a non-myeloablative transplant model[J]. Br J Haematol,2014,164(3):409-413. doi: 10.1111/bjh.2014.164.issue-3
    [9] Yang D, Sun S, Wang Z, et al. Stromal cell-derived factor-1 receptor CXCR4-overexpressing bone marrow mesenchymal stem cells accelerate wound healing by migrating into skin injury areas[J]. Cell Reprogram,2013,15(3):206-215. http://cn.bing.com/academic/profile?id=65100295&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Xu X, Zhu F, Zhang M, et al. Stromal cell-derived factor-1 enhances wound healing through recruiting bone marrow-derived mesenchymalstem cells to the wound area and promoting neovascularization[J]. Cells Tissues Organs,2013,197(2):103-113. doi: 10.1159/000342921
    [11] Xargay-Torrent S, López-Guerra M, Montraveta A, et al. Sorafenib inhibits cell migration and stroma-mediated bortezomib resistance by interfering B-cell receptor signaling and protein translation in mantle cell lymphoma[J]. Clin Cancer Res,2013,19(3):586-597. doi: 10.1158/1078-0432.CCR-12-1935
    [12] Wang S, Cheng H, Dai G, et al. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury[J]. Brain Res,2013,1532:76-84. doi: 10.1016/j.brainres.2013.08.001
    [13] Wang L, Pasha Z, Wang S, et al. Protein kinase G1α overexpression increases stem cell survival and cardiac function after myocardial infarction[J]. PLoS One,2013,8(3):e60087. doi: 10.1371/journal.pone.0060087
    [14] Virani S, Edwards AK, Thomas R, et al. Blocking of stromal cell-derived factor-1 reduces neoangiogenesis in human endometriosis lesions in a mouse model[J]. Am J Reprod Immunol,2013,70(5):386-397. http://cn.bing.com/academic/profile?id=2064946686&encoded=0&v=paper_preview&mkt=zh-cn
    [15] Tadakuma K, Tanaka N, Haraguchi Y, et al. A device for the rapid transfer/transplantation of living cell sheets with the absence of cell damage[J]. Biomaterials,2013,34(36):9018-9025. doi: 10.1016/j.biomaterials.2013.08.006
    [16] Sun D, Narsinh K, Wang H, et al. Effect of autologous bone marrow mononuclear cells transplantation in diabetic patients with ST-segmentelevation myocardial infarction[J]. Int J Cardiol,2013,167(2):537-547. doi: 10.1016/j.ijcard.2012.01.068
    [17] Suga A, Ueda K, Takemoto Y, et al. Significant role of bone marrow-derived cells in compensatory regenerative lung growth[J]. J Surg Res,2013,183(1):84-90. doi: 10.1016/j.jss.2012.12.013
    [18] Stojanovic D, Cvetkovic T, Stojanovic M, et al. Crosstalk of inflammatory mediators and lipid parameters as early markers of renal dysfunction in stable renal transplant recipients with regard to immunosuppression[J]. Ann Transplant,2013,18:414-423. doi: 10.12659/AOT.889239
    [19] 张力,赵雪云,刘胜春,等. 蛋白酶体抑制剂MG132减轻大鼠移植胰腺缺血再灌注损伤的作用[J].中华器官移植杂志,2013,34(6):358-361.

    Zhang L, Zhao XY, Liu SC, et al. Protective effect of MG132 on ischemia-reperfusion injury after pancreaticoduodenal transplantation in rats[J]. Chin J Organ Transplant,2013,34(6):358-361.
    [20] 王烨铭,陈静瑜,童继春,等.乌司他丁减轻无心跳大鼠供肺缺血再灌注损伤的作用及机制[J].中华器官移植杂志,2013,34(8):498-502.

    Wang YM, Chen JY, Tong JC, et al. Protective effects of ulinastatin on ischemia-reperfusion injury during rat non-heart beating donor lung transplantation[J]. Chin J Organ Transplant,2013,34(8):498-502.
  • 加载中
表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  48
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-10
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回