留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miRNA-155对调节性T细胞表型和功能的影响

范烨 陆云杰 鲁皓 张峰 李国强 吕凌

范烨, 陆云杰, 鲁皓, 等. miRNA-155对调节性T细胞表型和功能的影响[J]. 器官移植, 2014, 5(5): 277-282. doi: 10.3969/j.issn.1674-7445.2014.05.004
引用本文: 范烨, 陆云杰, 鲁皓, 等. miRNA-155对调节性T细胞表型和功能的影响[J]. 器官移植, 2014, 5(5): 277-282. doi: 10.3969/j.issn.1674-7445.2014.05.004
Fan Ye, Lu Yunjie, Lu Hao, et al. Effect of miRNA-155 on phenotype and function of regulatory T cell[J]. ORGAN TRANSPLANTATION, 2014, 5(5): 277-282. doi: 10.3969/j.issn.1674-7445.2014.05.004
Citation: Fan Ye, Lu Yunjie, Lu Hao, et al. Effect of miRNA-155 on phenotype and function of regulatory T cell[J]. ORGAN TRANSPLANTATION, 2014, 5(5): 277-282. doi: 10.3969/j.issn.1674-7445.2014.05.004

miRNA-155对调节性T细胞表型和功能的影响

doi: 10.3969/j.issn.1674-7445.2014.05.004
基金项目: 

国家自然科学基金 81273262、81210108017、81100270、81070380

详细信息
    通讯作者:

    吕凌,Email:lvling@njmu.edu.cn

  • 中图分类号: R617

Effect of miRNA-155 on phenotype and function of regulatory T cell

  • 摘要:   目的   探讨微小核糖核酸(miRNA)-155对调节性T细胞(Treg)的两种亚型诱导性Treg(iTreg)和天然性Treg(nTreg)的影响。   方法   采用健康成人外周血分离获取的外周血单个核细胞(PBMC),利用磁性细胞分选法分别获取幼稚T细胞和nTreg。培养阶段将细胞分为3组:对照组(幼稚T细胞加入白细胞介素-2培养)、iTreg组(幼稚T细胞加入白细胞介素-2和转化生长因子-β培养)和nTreg组(nTreg加入白细胞介素-2培养)。每组再分为3个亚组:未处理亚组、scramble亚组和miRNA-155拮抗剂亚组(每亚组3个孔)。采用低密度芯片分析方法检测3组中的未处理亚组细胞中miRNA-155的基因表达水平。采用流式细胞术检测3组中各亚组细胞的表面标志物CD25、Foxp3、CD127水平。采用流式细胞术检测3组中各亚组细胞的CD4+ CD25+Foxp3+SOCS1+ Treg比例;采用流式细胞术检测3组中各亚组细胞的Treg抑制功能。   结果   与对照组和iTreg组比较,nTreg组细胞的miRNA-155表达水平明显降低,差异有统计学意义(均为P<0.05)。与对照组和iTreg组比较,nTreg组的SOCS1表达水平明显升高,差异均有统计学意义(均为P<0.05)。加入miRNA-155拮抗剂后并未导致Foxp3、CD127和CD25等Treg重要表面标志物发生明显的变化。与对照组和iTreg组比较,nTreg组的SOCS1表达水平明显升高,差异均有统计学意义(均为P<0.05)。iTreg组中的未处理亚组细胞miRNA-155表达水平较低,而拮抗剂抑制其表达之后(miRNA-155拮抗剂亚组),能够使其SOCS1表达升高。iTreg组中,与未处理亚组比较,miRNA-155拮抗剂亚组的Treg抑制功能在1:8、1:16、1:32的比例时,显示出了更强的抑制功能(均为P<0.05)。   结论   体外拮抗miRNA-155对nTreg的抑制功能无明显影响,但是能够增加iTreg的SOCS1表达水平和体外抑制功能。

     

  • 图  1  3组细胞中未处理亚组的miRNA-155表达水平的比较

    注:与对照组比较,aP<0.05;与iTreg组比较,bPP<0.05

    Figure  1.  Comparison of expression level of miRNA-155 of none subgroup among3 groups

    图  2  3组中各亚组细胞表面标志物Foxp3、CD127和CD25水平的比较

    Figure  2.  Comparison of the levels of surface marker Foxp3, CD127 and CD25 of each subgroup among3 groups

    图  3  3组中各亚组细CD4+CD25+Foxp3+SOCS1+ Treg比例的比较

    Figure  3.  Comparison of the percentages of CD4+CD25+Foxp3+SOCS1+ Treg of each subgroup among3 groups

    图  4  3组中各亚组细胞Treg抑制功能的比较

    注: A、B、C图分别为对照组、iTreg组和nTreg组中各亚组Treg抑制功能曲线;D图为Treg∶效应性T细胞=1∶16时的流式细胞图;与未处理亚组比较,aPP<0.05

    Figure  4.  Comparison of suppressive function of Treg of each subgroup among3 groups

  • [1] Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol,2004,22:531-562. doi: 10.1146/annurev.immunol.21.120601.141122
    [2] Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells[J]. Science,2003,299(5609):1033-1036. doi: 10.1126/science.1078231
    [3] Kong N, Lan Q, Chen M, et al. Antigen-specific transforming growth factor β-induced Treg cells, but not natural Treg cells, ameliorate autoimmune arthritis in mice by shifting the Th17/Treg cell balance from Th17 predominance to Treg cell predominance[J]. Arthritis Rheum,2012,64(8):2548-2558. doi: 10.1002/art.34513
    [4] Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease[J]. Dev Cell,2006,11(4):441-450. doi: 10.1016/j.devcel.2006.09.009
    [5] Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action[J]. Nat Rev Mol Cell Biol,2009,10(2):141-148. http://cn.bing.com/academic/profile?id=1995073275&encoded=0&v=paper_preview&mkt=zh-cn
    [6] Davis BN, Hata A. Regulation of microRNA biogenesis: a miRiad of mechanisms[J]. Cell Commun Signal,2009,7:18. doi: 10.1186/1478-811X-7-18
    [7] Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein[J]. Immunity,2009,30(1):80-91. doi: 10.1016/j.immuni.2008.11.010
    [8] Kohlhaas S, Garden OA, Scudamore C, et al. Cutting edge: the Foxp3 target miR-155 contributes to the development of regulatory T cells[J]. J Immunol,2009,182(5):2578-2582. doi: 10.4049/jimmunol.0803162
    [9] Yao R, Ma YL, Liang W, et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1[J]. PLoS One,2012,7(10):e46082. doi: 10.1371/journal.pone.0046082
    [10] Zhang M, Zhang Q, Liu F, et al. MicroRNA-155 may affect allograft survival by regulating the expression of suppressor of cytokine signaling 1[J]. Med Hypotheses,2011,77(4):682-684. doi: 10.1016/j.mehy.2011.07.016
    [11] Hori S. Lineage stability and phenotypic plasticity of Foxp3+ regulatory T cells[J]. Immunol Rev,2014,259(1):159-172. doi: 10.1111/imr.12175
    [12] Gołąb K, Krzystyniak A, Marek-Trzonkowska N, et al. Impact of culture medium on CD4(+) CD25(high)CD127(lo/neg) Treg expansion for the purpose of clinical application[J]. Int Immunopharmacol,2013,16(3):358-363. doi: 10.1016/j.intimp.2013.02.016
    [13] Collins EL, Jager LD, Dabelic R, et al. Inhibition of SOCS1-/- lethal autoinflammatory disease correlated to enhanced peripheral Foxp3+ regulatory T cell homeostasis[J]. J Immunol,2011,187(5):2666-2676. doi: 10.4049/jimmunol.1003819
    [14] Cobb BS, Hertweck A, Smith J, et al. A role for Dicer in immune regulation[J]. J Exp Med,2006,203(11):2519-2527. doi: 10.1084/jem.20061692
    [15] Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection[J]. Cell,2007,129(1):147-161. doi: 10.1016/j.cell.2007.03.008
    [16] O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder[J]. J Exp Med,2008,205(3):585-594. doi: 10.1084/jem.20072108
    [17] O'Connell RM, Chaudhuri AA, Rao DS, et al. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output[J]. Proc Natl Acad Sci U S A,2010,107(32):14235-14240. doi: 10.1073/pnas.1009798107
    [18] Vigorito E, Perks KL, Abreu-Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells[J]. Immunity,2007,27(6):847-859. doi: 10.1016/j.immuni.2007.10.009
    [19] Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis[J]. Arthritis Rheum,2008,58(4):1001-1009. doi: 10.1002/art.23386
    [20] Cooles FA, Isaacs JD, Anderson AE. Treg cells in rheumatoid arthritis: an update[J]. Curr Rheumatol Rep,2013,15(9):352. doi: 10.1007/s11926-013-0352-0
    [21] Szodoray P, Nakken B, Barath S, et al. Altered Th17 cells and Th17/regulatory T-cell ratios indicate the subsequent conversion from undifferentiated connective tissue disease to definitive systemic autoimmune disorders[J]. Hum Immunol,2013,74(12):1510-1518. doi: 10.1016/j.humimm.2013.08.003
    [22] Dons EM, Raimondi G, Cooper DK, et al. Induced regulatory T cells: mechanisms of conversion and suppressive potential[J]. Hum Immunol,2012,73(4):328-334. doi: 10.1016/j.humimm.2011.12.011
  • 加载中
图(4)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  68
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-27
  • 刊出日期:  2014-09-15

目录

    /

    返回文章
    返回