留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年器官移植基础免疫学研究进展

吴昌鸿, 徐亚男, 田倩川, 等. 2021年器官移植基础免疫学研究进展[J]. 器官移植, 2022, 13(3): 317-324. doi: 10.3969/j.issn.1674-7445.2022.03.006
引用本文: 吴昌鸿, 徐亚男, 田倩川, 等. 2021年器官移植基础免疫学研究进展[J]. 器官移植, 2022, 13(3): 317-324. doi: 10.3969/j.issn.1674-7445.2022.03.006
Wu Changhong, Xu Ya'nan, Tian Qianchuan, et al. Research progress on basic immunology of organ transplantation in 2021[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 317-324. doi: 10.3969/j.issn.1674-7445.2022.03.006
Citation: Wu Changhong, Xu Ya'nan, Tian Qianchuan, et al. Research progress on basic immunology of organ transplantation in 2021[J]. ORGAN TRANSPLANTATION, 2022, 13(3): 317-324. doi: 10.3969/j.issn.1674-7445.2022.03.006

2021年器官移植基础免疫学研究进展

doi: 10.3969/j.issn.1674-7445.2022.03.006
基金项目: 

国家重点研发计划 2017YFA0105002

国家重点研发计划 2017YFA0104401

国家重点研发计划 2017YFA0104402

国家自然科学基金面上项目和重点项目 31930041

中国科学院知识创新工程 XDA16030301

详细信息
    作者简介:
    通讯作者:

    赵勇,男,1964年生,博士,研究员,研究方向为移植免疫学,Email:zhaoy@ioz.ac.cn

  • 中图分类号: R617, R392.4

Research progress on basic immunology of organ transplantation in 2021

More Information
  • 摘要: 近年来,器官移植科学和技术迅猛发展,并在世界范围内得到广泛应用。然而,移植器官的功能损伤和免疫排斥反应、免疫抑制剂大量使用导致的免疫低下、移植物慢性失功和不良反应等问题依然是横亘在医师面前的主要困难,亟待进一步研究和攻克。本文以免疫细胞亚群在器官移植排斥反应或免疫耐受形成过程中的作用和机制、新材料及新药物在器官移植中的研究和使用为主要线索盘点介绍了部分2021年发表的相关重点研究结果,简单归纳了区域免疫应答特别是组织定居记忆性T细胞在器官移植中的最新研究进展,对未来移植免疫学的发展进行了展望。

     

  • [1] OTSUKA S, MELIS N, GAIDA MM, et al. Calcineurin inhibitors suppress acute graft-versus-host disease via NFAT-independent inhibition of T cell receptor signaling[J]. J Clin Invest, 2021, 131(11): e147683. DOI: 10.1172/JCI147683.
    [2] MOHAMMED MT, CAI S, HANSON BL, et al. Follicular T cells mediate donor-specific antibody and rejection after solid organ transplantation[J]. Am J Transplant, 2021, 21(5): 1893-1901. DOI: 10.1111/ajt.16484.
    [3] GUGLIELMO C, BIN S, CANTARELLI C, et al. Erythropoietin reduces auto- and alloantibodies by inhibiting T follicular helper cell differentiation[J]. J Am Soc Nephrol, 2021, 32(10): 2542-2560. DOI: 10.1681/ASN.2021010098.
    [4] MUÑOZ M, HEGAZY AN, BRUNNER TM, et al. Th2 cells lacking T-bet suppress naive and memory T cell responses via IL-10[J]. Proc Natl Acad Sci U S A, 2021, 118(6): e2002787118. DOI: 10.1073/pnas.2002787118.
    [5] ROMANO M, TUNG SL, SMYTH LA, et al. Treg therapy in transplantation: a general overview[J]. Transpl Int, 2017, 30(8): 745-753. DOI: 10.1111/tri.12909.
    [6] SCHWARZ C, MAHR B, MUCKENHUBER M, et al. In vivo Treg expansion under costimulation blockade targets early rejection and improves long-term outcome[J]. Am J Transplant, 2021, 21(11): 3765-3774. DOI: 10.1111/ajt.16724.
    [7] ZHAO J, JIANG L, UEHARA M, et al. ACTH treatment promotes murine cardiac allograft acceptance[J]. JCI Insight, 2021, 6(13): e143385. DOI: 10.1172/jci.insight.143385.
    [8] TREVELIN SC, ZAMPETAKI A, SAWYER G, et al. Nox2-deficient Tregs improve heart transplant outcomes via their increased graft recruitment and enhanced potency[J]. JCI Insight, 2021, 6(18): e149301. DOI: 10.1172/jci.insight.149301.
    [9] HIRAI T, RAMOS TL, LIN PY, et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance[J]. J Clin Invest, 2021, 131(8): e139991. DOI: 10.1172/JCI139991.
    [10] SCHMITZ R, FITCH ZW, SCHRODER PM, et al. B cells in transplant tolerance and rejection: friends or foes?[J]. Transpl Int, 2020, 33(1): 30-40. DOI: 10.1111/tri.13549.
    [11] ASANO Y, DACCACHE J, JAIN D, et al. Innate-like self-reactive B cells infiltrate human renal allografts during transplant rejection[J]. Nat Commun, 2021, 12(1): 4372. DOI: 10.1038/s41467-021-24615-6.
    [12] ZENG F, CHEN Z, CHEN R, et al. Graft-derived extracellular vesicles transported across subcapsular sinus macrophages elicit B cell alloimmunity after transplantation[J]. Sci Transl Med, 2021, 13(585): eabb0122. DOI: 10.1126/scitranslmed.abb0122.
    [13] WANG G, ZOU D, WANG Y, et al. IRF4 ablation in B cells abrogates allogeneic B cell responses and prevents chronic transplant rejection[J]. J Heart Lung Transplant, 2021, 40(10): 1122-1132. DOI: 10.1016/j.healun.2021.06.008.
    [14] LI W, WANG D, YUE R, et al. Gut microbes enlarged the protective effect of transplanted regulatory B cells on rejection of cardiac allografts[J]. J Heart Lung Transplant, 2021, 40(12): 1502-1516. DOI: 10.1016/j.healun.2021.08.008.
    [15] WANG B, ZHOU Q, LI A, et al. Preventing alloimmune rejection using circular RNA FSCN1-silenced dendritic cells in heart transplantation[J]. J Heart Lung Transplant, 2021, 40(7): 584-594. DOI: 10.1016/j.healun.2021.03.025.
    [16] ZHAO J, QUE W, DU X, et al. Monotherapy with anti-CD70 antibody causes long-term mouse cardiac allograft acceptance with induction of tolerogenic dendritic cells[J]. Front Immunol, 2021, 11: 555996. DOI: 10.3389/fimmu.2020.555996.
    [17] USUELLI V, BEN NASR M, D'ADDIO F, et al. MiR-21 antagonism reprograms macrophage metabolism and abrogates chronic allograft vasculopathy[J]. Am J Transplant, 2021, 21(10): 3280-3295. DOI: 10.1111/ajt.16581.
    [18] LIN CM, GILL RG, MEHRAD B. The natural killer cell activating receptor, NKG2D, is critical to antibody-dependent chronic rejection in heart transplantation[J]. Am J Transplant, 2021, 21(11): 3550-3560. DOI: 10.1111/ajt.16690.
    [19] ZHANG W, LI J, QI G, et al. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy[J]. J Transl Med, 2018, 16(1): 19. DOI: 10.1186/s12967-018-1395-9.
    [20] SCHEURER J, KITT K, HUBER HJ, et al. Graft-versus-host disease prevention by in vitro-generated myeloid-derived suppressor cells is exclusively mediated by the CD11b+CD11c+ MDSC subpopulation[J]. Front Immunol, 2021, 12: 754316. DOI: 10.3389/fimmu.2021.754316.
    [21] LI J, TU G, ZHANG W, et al. CHBP induces stronger immunosuppressive CD127+ M-MDSC via erythropoietin receptor[J]. Cell Death Dis, 2021, 12(2): 177. DOI: 10.1038/s41419-021-03448-7.
    [22] MARSHALL PL, NAGY N, KABER G, et al. Hyaluronan synthesis inhibition impairs antigen presentation and delays transplantation rejection[J]. Matrix Biol, 2021, 96: 69-86. DOI: 10.1016/j.matbio.2020.12.001.
    [23] SCHMITZ R, FITCH ZW, SCHRODER PM, et al. C3 complement inhibition prevents antibody-mediated rejection and prolongs renal allograft survival in sensitized non-human primates[J]. Nat Commun, 2021, 12(1): 5456. DOI: 10.1038/s41467-021-25745-7.
    [24] VAN DE WALLE I, SILENCE K, BUDDING K, et al. ARGX-117, a therapeutic complement inhibiting antibody targeting C2[J]. J Allergy Clin Immunol, 2021, 147(4): 1420-1429. DOI: 10.1016/j.jaci.2020.08.028.
    [25] HERR F, DESTERKE C, BARGIEL K, et al. The proliferation of belatacept-resistant T cells requires early IFNα pathway activation[J]. Am J Transplant, 2022, 22(2): 489-503. DOI: 10.1111/ajt.16811.
    [26] SUN H, HARTIGAN CR, CHEN CW, et al. TIGIT regulates apoptosis of risky memory T cell subsets implicated in belatacept-resistant rejection[J]. Am J Transplant, 2021, 21(10): 3256-3267. DOI: 10.1111/ajt.16571.
    [27] TSAI HI, WU Y, LIU X, et al. Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection[J]. Adv Sci (Weinh), 2022, 9(3): e2102634. DOI: 10.1002/advs.202102634.
    [28] DENG C, JIN Q, WU Y, et al. Immunosuppressive effect of PLGA-FK506-NPs in treatment of acute cardiac rejection via topical subcutaneous injection[J]. Drug Deliv, 2021, 28(1): 1759-1768. DOI: 10.1080/10717544.2021.1968978.
    [29] SHI Y, LU Y, ZHU C, et al. Targeted regulation of lymphocytic ER stress response with an overall immunosuppression to alleviate allograft rejection[J]. Biomaterials, 2021, 272: 120757. DOI: 10.1016/j.biomaterials.2021.120757.
    [30] PUIGMAL N, DOSTA P, SOLHJOU Z, et al. Microneedle-based local delivery of CCL22 and IL-2 enriches Treg homing to the skin allograft and enables temporal monitoring of immunotherapy efficacy[J]. Adv Funct Mater, 2021, 31(44): 2170324.
    [31] LI Z, LIU R, GUO Z, et al. Celastrol-based nanomedicine promotes corneal allograft survival[J]. J Nanobiotechnology, 2021, 19(1): 341. DOI: 10.1186/s12951-021-01079-w.
    [32] SIREN EMJ, LUO HD, TAM F, et al. Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers[J]. Nat Biomed Eng, 2021, 5(10): 1202-1216. DOI: 10.1038/s41551-021-00777-y.
    [33] JOH S, NA HK, SON JG, et al. Quantitative analysis of immunosuppressive drugs using tungsten disulfide nanosheet-assisted laser desorption ionization mass spectrometry[J]. ACS Nano, 2021, 15(6): 10141-10152. DOI: 10.1021/acsnano.1c02016.
    [34] GAO T, WU Y, WANG W, et al. Biomimetic glucan particles with aggregation-induced emission characteristics for noninvasive monitoring of transplant immune response[J]. ACS Nano, 2021, DOI: 10.1021/acsnano.1c03029[Epub ahead of print].
    [35] SNYDER ME, FINLAYSON MO, CONNORS TJ, et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation[J]. Sci Immunol, 2019, 4(33): eaav5581. DOI: 10.1126/sciimmunol.aav5581.
    [36] PROSSER A, HUANG WH, LIU L, et al. Dynamic changes to tissue-resident immunity after MHC-matched and MHC-mismatched solid organ transplantation[J]. Cell Rep, 2021, 35(7): 109141. DOI: 10.1016/j.celrep.2021.109141.
    [37] JIAO W, MARTINEZ M, ZUBER J, et al. PE-2: dynamic reconstitution of recipient resident memory T cell repertoire after human intestinal transplantation[J]. Transplantation, 2021, 105(7S): S29-S30. DOI: 10.1097/01.tp.0000757680.43181.b2.
    [38] WEINER J, SVETLICKY N, KANG J, et al. CD69+ resident memory T cells are associated with graft-versus-host disease in intestinal transplantation[J]. Am J Transplant, 2021, 21(5): 1878-1892. DOI: 10.1111/ajt.16405.
    [39] ABOU-DAYA KI, TIEU R, ZHAO D, et al. Resident memory T cells form during persistent antigen exposure leading to allograft rejection[J]. Sci Immunol, 2021, 6(57): eabc8122. DOI: 10.1126/sciimmunol.abc8122.
    [40] TIAN Q, ZHANG Z, TAN L, et al. Skin and heart allograft rejection solely by long-lived alloreactive TRM cells in skin of severe combined immunodeficient mice[J]. Sci Adv, 2022, 8(4): eabk0270. DOI: 10.1126/sciadv.abk0270.
  • 加载中
图(1)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  245
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-05-15

目录

    /

    返回文章
    返回