Relationship between the expression of SDF-1, ICAM-1 and renal tubular necrosis score in rats with renal ischemic reperfusion injury

Ma Shaaijun, Zhang Geng, Cao Zhiqiang, Liu Kepu, Li Zhibin, Ruan Dongli, Yang Xiaojian, Yuan Jianlin. Department of Urology, Xi'ning Hospital, the Fourth Military Medical University, Xi'an 710032, China

Corresponding author: Yuan Jianlin, Email: jianliny@fmnu.edu.cn

【Abstract】 Objective To investigate the relationship between the expression of stromal cell derived factor (SDF) -1, intercellular adhesion molecule (ICAM) -1 and renal tubular necrosis score in rats with renal ischemic reperfusion injury (IRI). Methods Sixty Sprague-Dawley (SD) rats were randomly divided into operation group and sham operation group with 30 rats in each group. Then each group was divided into 6 subgroups (1 h, 6 h, 12 h, 24 h, 48 h or 72 h) according to different time of measurement after operation with 5 rats in each subgroup. Renal IRI model was built in rats of operation group. The bilateral renal arteries were dissected in rats of sham operation group and then the incision was sutured. The renal function, renal tubular necrosis score and the variation of SDF-1, ICAM-1 expression in renal tissues at different time points were measured. The relationship between the expression of SDF-1, ICAM-1 in renal tissues and renal tubular necrosis score in rats of operation group was analyzed by Pearson correlation analysis. Results The levels of urea nitrogen (BUN) and serum creatinine (Scr) after operation in each subgroup of operation group.
were significantly higher than those before operation and those in the corresponding subgroups of sham operation group (all in $P < 0.05$). They increased significantly 12 h after operation and reached the peak at 48 h after operation. The renal tubular necrosis score in operation group increased gradually over time (all in $P < 0.05$). The highest renal tubular necrosis score was in the 48 h operation subgroup ($P < 0.05$). Compared with those in 1 h operation subgroup, the expression of SDF-1, ICAM-1 in rats' renal tissues of 6 h operation subgroup began to increase significantly, and they reached the peak at 48 h after operation and began to drop down at 72 h after operation. The expression of SDF-1, ICAM-1 in rats renal tissues in operation group were positively correlated with the levels of BUN, Scr and renal tubular necrosis score at different time points after operation ($r = 0.614, 0.662, 0.751; 0.640, 0.703, 0.785; P < 0.05$). **Conclusions** When rat’s renal tissue develops IRI, the expression of SDF-1, ICAM-1, BUN, Scr and renal tubular necrosis score increased. The expression of SDF-1, ICAM-1 are positively correlated with BUN, Scr and renal tubular necrosis score. The increased expression of SDF-1, ICAM-1 can serve as an indicator of the severity of renal IRI.

Key words Rat; Kidney; Ischemic reperfusion injury; Stromal cell derived factor -1; Intercellular adhesion molecule -1

肾移植过程中不可避免发生移植肾缺血-再灌注损伤（IRI）。移植肾 IRI 是肾移植术后排斥反应、移植植物功能延迟恢复等的常见原因[1]。正常情况下，细胞间黏附分子（ICAM）-1 和基质细胞衍生因子（stromal cell derived factor, SDF）-1 在肾组织呈低水平表达[2]。ICAM-1 及其介导的中性粒细胞与内皮细胞的黏附在肾 IRI、移植后排斥反应中发挥着重要的作用[3]。SDF-1 与心脏 IRI、造血系统疾病、肿瘤、肝脏疾病等的相关性研究均有报道，而与肾脏 IRI、肾脏移植及排斥反应的相关性研究较少[4-5]。本研究观察大鼠 IRI 模型的肾脏组织 SDF-1、ICAM-1 的表达及其与肾功能损害的关系，旨在为下一步寻找治疗肾 IRI、排斥反应、移植肾延迟恢复的新方法奠定基础。

1 材料与方法

1.1 实验动物

健康雄性 Sprague-Dawley（SD）大鼠 60 只，体重 240～260 g，购自第四军医大学实验动物中心。用标准大鼠饲料喂养，自由饮水。实验过程中对大鼠的处置按照中华人民共和国科学技术委员会颁布的《实验动物管理条例》的相关规定进行，符合动物伦理学管理要求。

1.2 主要试剂和仪器

7% 水合氯醛（购自上海山浦化工有限公司），4% 多聚甲醛（购自西安科兴生物公司），无损伤动脉夹，显微手术器械，血尿素氮（BUN）、血清肌酐（Scr）检测试剂盒（购自南京建成生物工程研究所），大鼠 SDF-1、ICAM-1 酶联免疫吸附试验（ELISA）试剂盒（购自美国 BD Bioscience 公司），Ultrspec 4300pro 分光光度计（购自英国 Amersham Pharmacia Biotech 公司），Eclipse 50i 显微镜（购自 Nikon 公司）。

1.3 方法

1.3.1 实验分组及建模方法 将大鼠随机分成手术组、假手术组两组，每组各 30 只。根据手术后检测时间不同，每组再分为 6 个不同时段的亚组（1、6、12、24、48、72 h 组），每个亚组有 5 只大鼠。建模方法：采用 7% 水合氯醛腹腔内注射麻醉后，取腹部正中切口，纵形切开约 3 cm，牵开肠管，打开腹膜，钝性游离脂肪组织显露肾动脉。手术组大鼠用无损伤血管夹夹闭双侧肾动脉，45 min 后松开血管夹，观察肾灌注良好后逐层间断缝合切口。假手术组大鼠于游离双侧肾动脉后不夹闭，用生理盐水纱布覆盖肾动脉，45 min 后缝合切口[6]。

1.3.2 血清尿素氮和肌酐的检测 手术组和假手术组各亚组大鼠分别于术前和术后相应时间点（1、6、12、24、48、72 h）采血，采血后静置 20～30 min，离心 1 000 × g 15 min，如有沉淀，再次离心，收取上清液（血清）。根据试剂盒说明书检测 BUN、Scr 的数值。

1.3.3 肾组织 SDF-1、ICAM-1 表达的检测 两组大鼠术后各相应时间点采血，然后处死，取部分肾组织迅速冻存，避免反复冻融，要充分匀浆。使用 SDF-1、ICAM-1 ELISA 试剂盒分别检测肾组织的 SDF-1、ICAM-1 的表达情况。

1.3.4 肾小管坏死评分的方法 另取部分肾组织置于 4% 多聚甲醛固定，石蜡包埋后制成切片，苏
木素-伊红（HE）染色，在光学显微镜下进行肾小管坏死评分，评分标准根据 Paller 氏法进行肾小管坏死评分[7]。

1.3.5 相关分析 对手术组肾组织 SDF-1、ICAM-1 表达与肾功能和肾小管坏死评分进行相关性分析，计算相关系数（r）。

1.4 统计学方法

应用 SPSS 13.0 软件进行统计学分析。所有数据用均数 ± 标准差表示，多组间比较应用方差分析。各指标的关系采用 Pearson 直线相关分析。P < 0.05 为差异有统计学意义。

2 结果

2.1 各组大鼠术前后肾功能变化

详见表1。从表1可见，术前假手术组各亚组与手术组各亚组的 BUN、Scr 水平比较差异均无统计学意义，假手术组各亚组术前后的 BUN、Scr 水平比较差异均无统计学意义（均为 P > 0.05）。大鼠组 BUN、Scr 较术前及相对时间段假手术组亚组明显升高（均为 P < 0.05），且于术后 12 h 显著升高，高峰期在术后 48 h。

2.2 各组大鼠术后不同时间肾组织 SDF-1、ICAM-1 的表达

详见表2。与手术 1 h 组比较，手术 6 h 组大鼠肾组织 SDF-1、ICAM-1 表达开始明显增多（均为 P < 0.05）；手术后 48 h 达高峰，于手术后 72 h 开始下降。假手术组不同时间段肾组织 SDF-1、ICAM-1 的表达差异均无统计学意义（均为 P > 0.05）。

2.3 各组大鼠术后不同时间的肾小管坏死评分

详见表3。从表3可见，手术组大鼠的肾小管坏死评分随时间的延长逐渐增高，手术 48 h 组的肾小管坏死评分最高，假手术组肾小管坏死评分各亚组间差异无统计学意义（均为 P > 0.05）。

2.4 相关分析结果

Pearson 直线相关分析显示，手术组的肾组织 SDF-1、ICAM-1 表达与术后各时间段 BUN、Scr、肾小管坏死评分呈正相关（r = 0.614、0.662、0.751；0.640、0.703、0.785；P < 0.05）。

3 讨论

SDF-1 是骨髓基质细胞产生的 CXC 类趋化蛋白，属于趋化因子 CXC 亚家族，系统命名

<table>
<thead>
<tr>
<th>表 1 各组大鼠术前后不同时间的肾功能变化</th>
<th>The change of renal function in each group of rats at different time point before and after surgery（x ± s）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BUN (mmol/L)</td>
</tr>
<tr>
<td></td>
<td>术前</td>
</tr>
<tr>
<td>手术组</td>
<td></td>
</tr>
<tr>
<td>1 h 组</td>
<td>5</td>
</tr>
<tr>
<td>6 h 组</td>
<td>5</td>
</tr>
<tr>
<td>12 h 组</td>
<td>5</td>
</tr>
<tr>
<td>48 h 组</td>
<td>5</td>
</tr>
<tr>
<td>72 h 组</td>
<td>5</td>
</tr>
<tr>
<td>1 h 组</td>
<td>5</td>
</tr>
<tr>
<td>6 h 组</td>
<td>5</td>
</tr>
<tr>
<td>12 h 组</td>
<td>5</td>
</tr>
<tr>
<td>24 h 组</td>
<td>5</td>
</tr>
<tr>
<td>48 h 组</td>
<td>5</td>
</tr>
<tr>
<td>72 h 组</td>
<td>5</td>
</tr>
</tbody>
</table>

注：与同组术前比较，\(^{a}\)P < 0.05；与假手术同时间亚组比较，\(^{b}\)P < 0.05
表 2 各组大鼠术后不同时间的 SDF-1、ICAM-1 的表达

Table 2 SDF-1 and ICAM-1 expressions in each group of rats at different time point after surgery (μg/ml, x ± s)

<table>
<thead>
<tr>
<th>组别</th>
<th>术后时间</th>
<th>SDF-1</th>
<th>ICAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>手术组</td>
<td>1 h</td>
<td>0.86 ± 0.26</td>
<td>0.92 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>1.06 ± 0.15</td>
<td>1.28 ± 0.23</td>
</tr>
<tr>
<td></td>
<td>12 h</td>
<td>1.36 ± 0.30</td>
<td>1.45 ± 0.33</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>2.03 ± 0.22</td>
<td>1.73 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>48 h</td>
<td>3.35 ± 0.13</td>
<td>2.17 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>72 h</td>
<td>3.11 ± 0.28</td>
<td>2.13 ± 0.24</td>
</tr>
<tr>
<td>假手术组</td>
<td>1 h</td>
<td>0.53 ± 0.32</td>
<td>0.72 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>6 h</td>
<td>0.72 ± 0.25</td>
<td>0.81 ± 0.23</td>
</tr>
<tr>
<td></td>
<td>12 h</td>
<td>0.66 ± 0.27</td>
<td>0.79 ± 0.31</td>
</tr>
<tr>
<td></td>
<td>24 h</td>
<td>0.59 ± 0.22</td>
<td>0.83 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>48 h</td>
<td>0.78 ± 0.16</td>
<td>0.82 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>72 h</td>
<td>0.53 ± 0.32</td>
<td>0.77 ± 0.12</td>
</tr>
</tbody>
</table>

注：与手术 1 h 组比较，*P < 0.05

表 3 各组大鼠术后不同时间段肾小管坏死评分

Table 3 Tubular necrosis score in each group of rats at different time point after surgery (x ± s)

<table>
<thead>
<tr>
<th>时 间</th>
<th>n</th>
<th>手术组</th>
<th>假手术组</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>肾小管坏死评分</td>
<td>肾小管坏死评分</td>
</tr>
<tr>
<td>1 h</td>
<td>5</td>
<td>42.27 ± 2.82</td>
<td>5</td>
</tr>
<tr>
<td>6 h</td>
<td>5</td>
<td>44.30 ± 3.50</td>
<td>5</td>
</tr>
<tr>
<td>12 h</td>
<td>5</td>
<td>62.50 ± 1.87</td>
<td>5</td>
</tr>
<tr>
<td>24 h</td>
<td>5</td>
<td>97.30 ± 1.63</td>
<td>5</td>
</tr>
<tr>
<td>48 h</td>
<td>5</td>
<td>148.70 ± 5.43</td>
<td>5</td>
</tr>
<tr>
<td>72 h</td>
<td>5</td>
<td>122.50 ± 3.78</td>
<td>5</td>
</tr>
</tbody>
</table>

注：与假手术组同时间亚组比较，*P < 0.05

CXCL12。研究发现，当组织发生炎症、缺血、缺氧及变性时，促进 CXCR4 的炎症细胞向损伤组织浸润，加重组织损伤或促进损伤修复。当大鼠的 SDF-1 有 99% 的同源性，其 SDF-1 基因位于 10 号染色体长臂。SDF-1 和 CXCR4 广泛并并存性地表达于多种细胞和组织中，包括免疫细胞、干细胞、脑、心脏、肾、肝、肺和脾，在免疫系统、循环系统及中枢神经系统的发育中起着至关重要的作用。SDF-1 与 CXCR4 具有很强的亲和力，它们构成的生物轴参与细胞间信息传递，在促进新生血管形成、调控干细胞移行和归巢、趋向性分化修复损伤、介导免疫及炎症反应、调节恶性肿瘤的生长、浸润及转移等方面发挥了很大的作用。ICAM-1 为单链膜糖蛋白，属黏附分子中免疫球蛋白超家族成员，其基因位于 19 号染色体，广泛分布于各种上皮、血管内皮、成纤维、淋巴、单核巨噬细胞等，主要介导细胞-细胞与细胞与细胞外基质间黏附作用。ICAM-1 及其介导的中性粒细胞与内皮细胞的黏附在肾 IRI、移植后排斥反应中发挥着重要的作用。有学者认为移植肾组织内 ICAM-1 表达阳性的时间要早于肾移植组织检查形态学上出现排斥病理改变的时间。白细胞从血管内游走进入组织时需有 ICAM-1 分子的存在，由其共同介导细胞间黏附。此外，还有学者认为 ICAM-1 在排斥反应中也起重要的作用，且肾小管上皮细胞上 ICAM-1 的表达与排斥的严重性呈正相关。

本文研究结果显示，手术组大鼠 IRI 后 1 h BUN、Scr 开始升高，12 h 时显著升高，48 h 时达高峰，72 h 时开始回落。手术组术后 6 h SDF-1、ICAM-1 表达显著增多，手术后 48 h 达高峰，于手术后 72 h 开始下降。肾小管坏死评分随手术后时间的延长逐渐增高，最高值出现在手术后 48 h，说明大鼠肾 IRI 后肾损伤最严重时间为术后 48 h。相关性分析结果显示，术后不同时段肾组织 SDF-1、ICAM-1 表达水平与 BUN、Scr、肾小管坏死评分呈正相关。因此，大鼠肾 IRI 后肾组织 SDF-1、ICAM-1 表达水平越高，其 BUN、Scr、肾小管坏死评分就越高，说明肾脏的损伤就越严重。

综上所述，当大鼠发生肾 IRI 时，肾组织 SDF-1、ICAM-1 表达上调，BUN、Scr 升高，肾小管坏死评分升高，而且 SDF-1、ICAM-1 的表达与 BUN、Scr、肾小管坏死评分呈正相关。提示 SDF-1、ICAM-1 表达增高程度可以作为反映肾脏 IRI 后严重程度的指标。

参考文献：

第 5 期 马师军等。肾缺血-再灌注损伤大鼠 SDF-1、ICAM-1 表达与肾小管坏死评分的相关性研究。

（收稿日期：2014-05-10）