自噬与肝移植的研究进展

赵坤 综述 叶小鸣 审校

【摘要】自噬是真核细胞为应对外界变化，依赖溶酶体对包括衰老细胞器和胞内过量蛋白质等自身结构进行可控制性生物学降解的过程。自噬与肝移植缺血-再灌注损伤和术后免疫抑制剂的效应有者密切关系。本文就自噬在肝移植中的调控机制进行综述。

【关键词】自噬；缺血-再灌注损伤；肝移植；Beclin-1；轻链3-Ⅱ

【中图分类号】R617 【文献标志码】A 【文章编号】1674-7445（2015）03-0016-03

自噬（autophagy）是真核细胞为应对外界变化，依赖溶酶体对自身结构进行生物学降解的过程[1]。肝移植是成人和儿童终末期肝病的唯一治疗方法[2]。尽管肝移植手术技术、术前护理、免疫抑制已经取得显著进步，但仍有20%的肝移植患者存在临床问题[3]。多项研究表明，自噬与肝移植术后的生存有密切关系。因此，本文就自噬在肝移植术后的调控机制进行综述，以期为提高肝移植术后的存活率提供一些新的研究线索。

1 自噬的定义

自噬是一种维持细胞稳态的正常机制[4-8]，是通过溶酶体降解衰老的细胞器和胞内过量蛋白质的过程[9]。自噬的诱导因素包括缺氧、营养物质缺乏、异构蛋白聚积、病菌感染等[10-12]。根据转运到溶酶体的方式和底物的种类不同，可分为巨自噬、微自噬和分子伴侣介导的自噬[13-14]。巨自噬指非溶酶体来源的双层膜结构，包裹细胞质中长半衰期蛋白和炎症坏死的细胞器，形成自噬泡，与溶酶体融合而降解的过程。微自噬指溶酶体膜通过自身变形、包裹并吞噬细胞质中的底物，并对底物进行有效水解的过程。分子伴侣介导的自噬是指细胞中可溶性蛋白质通过分子伴侣介导进入溶酶体而被降解的过程。通常所说的自噬是指巨自噬[15-18]。自噬由起始、延长、成熟和降解等连续过程构成，包括多种信号途径，并由高度保守的自噬相关基因调控[19-21]。多种疾病的发病机制涉及到自噬，如神经细胞变性、炎症性疾病、衰老、肿瘤的发生与发展[15-18]。

2 自噬与肝脏缺血-再灌注损伤

肝移植是治疗终末期肝病的唯一有效方案[2]。目前，供肝短缺仍然是制约肝移植发展的重要因素，因此，边缘供肝如脂肪肝也被用于移植。边缘供肝容易出现缺血-再灌注损伤，导致此类肝脏移植受者的预后较差[19]。

在多种诱导供体损伤的因素中，缺血-再灌注是主要原因。供肝损伤的严重程度与冷藏时间密切相关。了解移植肝细胞缺血-再灌注损伤的超微细胞结构改变非常重要。有研究发现，再灌注后肝窦内皮细胞会出现退化、坏死和凋亡，细胞基质（Kupffer）细胞活动，浸润作用加强，释放多种炎症介质。自噬是一种细胞主动死亡的类型，溶酶体蛋白起着重要的作用。研究发现，自噬体不仅出现在移植肝细胞的低温保存期中，也出现在缺血-再灌注的过程中。许多研究都表明自噬在移植肝细胞低温保存期的激活机制与其在细胞营养缺乏的诱导机制类似。此外，在缺血初期，坏死的肝细胞中出现大量的自噬体，这与再灌注后三磷酸腺苷（ATP）释放同样作为机体的应激反应。含有自噬体的肝细胞往往会退化，进而再灌注晚期被Kupffer细胞吞噬。这可能与凋亡细胞在低温保存期后的再灌注时聚集，阻碍肝窦内皮细胞的炎症反应。而自噬与移植肝细胞坏死的具体机制尚待研究。

肝缺血-再灌注损伤主要出现于肝移植、肝脏休克、肝叶切除，可导致肝细胞坏死、肝脏失活，甚至肝衰竭[22-23]。预防肝移植术后缺血-再灌注损伤对保护肝脏、提高肝移植术后患者存活率十分重要。自噬作为第二类细胞凋亡方式，对细胞内物质，在一定范围内可以维持细胞内环境稳定[24-25]。然而，当超过这个范围，尤其在持续营养不良、缺氧、炎症中，自噬体会积聚，增多，最终会导致细胞死亡[24-26]。Beclin-1可以促进自噬，轻链（light chain3，LC3）-Ⅱ是位于自噬体上的唯一蛋白，两者已经由证实可以作为自噬的标记物。有研究发现，丙酰酸乙酯可以抑制Beclin-1和LC3的表达，可以减弱自噬的程度，进而抑制缺血-再灌注损伤[26]。此项研究还发现，丙酰酸

DOI: 10.3969/j.issn.1674-7445.2015.03.016
基金项目：国家自然科学基金（81302550）
作者单位：510530 广州，中山大学附属第三医院岭南医院普通外科
通讯作者：叶小鸣，Email：james007y@21cn.com
乙酸主要通过抑制一种在自噬中可被激活的炎性因子高迁移率族白蛋白 B1 (high mobility group box 1, HMGB1) 的表达，来抑制 HMGB1 和 Beclin-1 的 Bcl-2 结构域结合，而使自噬不能活化。此外，丙酮酸乙酯还通过增加 Bcl-2 的表达，使得 Bcl-2 和 Beclin-1 紧密结合来抑制自噬。

自噬不仅可以重吸收氨基酸，还可以清理损伤的细胞器，以此清除氧化应激，促进细胞重塑。有研究发现在肝移植供体冷保存期中，自噬过程受到抑制，进而转变为细胞坏死型凋亡，进而导致肝移植供体的功能损害[27]。研究还发现，自噬缺陷细胞内病态的线粒体增多[21]。

由于肝移植供体缺乏，往往不采用脂肪肝供肝。与正常肝脏相比，脂肪肝更易发生缺血-再灌注损伤。脂肪肝移植后移植肝失功的发生率为 60%，远高于非脂肪肝的 5%。有研究发现缺血预处理可以通过诱导自噬的发生，抑制脂肪肝供肝发生急性及慢性排斥反应[29]。缺血预处理包括短时间阻断血管，由多种内在机制介导保护肝脏免遭缺血-再灌注损伤，这些内在机制包括抑制细胞凋亡，保存 ATP，产生存活细胞因子以及抗炎因子。有研究在动物实验中证实再灌注状态发生自噬，进而抑制细胞死亡和凋亡[30]。而缺血预处理，可诱导自噬发生，促进细胞内 ATP 的生成，减轻炎症反应来促进细胞生存[26]。这些都表明自噬可在肝移植中起到抑制排斥反应的重要作用。

3 自噬与肝移植术后免疫抑制剂的应用

肝移植术后使用的免疫抑制剂包括吗替麦考酚酯、钙神经蛋白抑制剂等。这类方案和慢性肾炎肾的发生有密切关系，会导致 20% 患者出现肾功能障碍。哺乳动物西罗莫司靶蛋白（mammalian target of sirolimus, mTOR）抑制剂西罗莫司不会引起肾毒性，可以作为上述药物的替代药物[31]。mTOR 是 PI3K-Akt 下游的一个效应分子，可以抑制自噬的发生[32]。mTOR 抑制剂有可能抑制自噬发生，应用于肝移植免疫抑制剂方案中还存在一定问题[33]，但是至少为肝移植免疫抑制剂的研发生找到了新的方向。

肝脏的缺血-再灌注损伤是肝移植术后肝损害的重要机制和原因。缺氧可导致活性氧（ROS）的生成，而 ROS 可引起细胞凋亡以及自噬的发生。N-乙酰半胱氨酸 (N-acetyl cysteine, NAC) 属于硫醇类，是 L-半胱氨酸的前体。N-乙酰半胱氨酸对于氧化性损伤有较好的疗效，并且可以清除自由基。N-乙酰半胱氨酸在一些临床疾病的治疗中已经得到广泛的应用，包括稳定性心绞痛、心肌缺血-再灌注损伤、阿霉素诱导的心脏毒性以及急性呼吸窘迫综合征等。近期有研究发现 N-乙酰半胱氨酸在抑制肝缺血-再灌注损伤中也有明显的作用，可以作为缺血-再灌注损伤的潜在治疗方案。此研究发现 N-乙酰半胱氨酸可以显著地抑制 Beclin-1 和 LC3 II 的表达。这就表明 N-乙酰半胱氨酸通过抑制自噬的发生来抑制缺血-再灌注损伤，主要是通过 mTOR 和 JNK 途径发挥作用[34]。

西罗莫司能够抑制 mTOR 途径，以获得免疫抑制表型，包括调节性 T 细胞诱导以及细胞因子极性的转变[35]。有研究发现在西罗莫司发挥免疫抑制过程中，自噬可以诱导 T 细胞的转变[36]。在小鼠 T 细胞中，mTOR 抑制自噬的发生，反之西罗莫司可诱导 mTOR 促进自噬的发生[37]。因此，西罗莫司可促进自噬发生以维持 T 细胞生存。T 细胞可促进 LC3B-I 和 LC3B-II 的保存，而 LC3B-I 和 LC3B-II 对于自噬体的形成十分关键。通过自噬抑制剂 3-MA 抑制自噬可以抑制抗凋亡作用和抗凋亡 T 细胞。敲除自噬相关基因 Beclin-1 可以抑制抗凋亡 T 细胞的表达。这些均证实西罗莫司通过抑制 mTOR 途径可以诱导自噬，促进抗凋亡细胞的生存[36]。

缓解缺血-再灌注损伤的另一种途径是将泛素蛋白酶系统抑制剂作为器官保存液的添加剂成分或者作为药物应用于患者。泛素蛋白酶系统的抑制剂可以促进腺苷酸活化激酶的表达，抑制 mTOR 的表达，最终促进自噬发生[38]。

4 小 结

肝移植是唯一能拯救终末期肝病患者生命的治疗方案。由于缺血-再灌注损伤的存在，极大地影响了肝移植术后患者的发生，常导致患者发生严重的术后并发症。通过研究肝移植与自噬的关系，可以为免疫抑制方案的打开以及缺血-再灌注损伤的处理提供新的思路，从而减少肝移植术后并发症的发生，提高患者的存活率。

参考文献:


[7] Rubinsztein DC, Cologno P, Levine B. Autophagy modulation as


